A 2ND-ORDER FINITE-DIFFERENCE ERROR INDICATOR FOR ADAPTIVE TRANSONIC FLOW COMPUTATIONS

被引:2
作者
GOHNER, U [1 ]
WARNECKE, G [1 ]
机构
[1] UNIV STUTTGART,INST MATH A,D-70569 STUTTGART,GERMANY
关键词
D O I
10.1007/s002110050114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive finite element method for the calculation of transonic potential flows was developed. An error indicator based on first order finite differences of gradients is introduced as a local error estimator. It measures second order distributional derivatives. Estimates involving this error estimator, a residual and the error are given. The error estimator can be used as a criterion for mesh refinement. We also give some computational results.
引用
收藏
页码:129 / 161
页数:33
相关论文
共 28 条
[1]  
ABDALASS EM, 1987, THESIS
[2]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[3]   A POSTERIORI ERROR ANALYSIS OF FINITE-ELEMENT SOLUTIONS FOR ONE-DIMENSIONAL PROBLEMS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :565-589
[4]  
Berger H., 1990, NUM METH PDE, V6, P17
[5]  
BERGER H, 1993, 939 U STUTTG MATH I
[6]  
BERGER H, 1989, FINITE ELEMENT APPRO
[7]   NUMERICAL-SOLUTION OF NON-LINEAR PROBLEMS IN FLUID-DYNAMICS BY LEAST-SQUARES AND FINITE-ELEMENT METHODS .1. LEAST-SQUARE FORMULATIONS AND CONJUGATE GRADIENT SOLUTION OF THE CONTINUOUS PROBLEMS [J].
BRISTEAU, MO ;
PIRONNEAU, O ;
GLOWINSKI, R ;
PERIAUX, J ;
PERRIER, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1979, 17-8 (MAR) :619-657
[8]  
BRISTEAU MO, 1977, 3RD P INRIA S COMPUT, P103
[9]  
BRISTEAU MO, 1982, FINITE ELEMENTS FLUI, V4, P453
[10]  
BRISTEAU MO, 1980, NUMERICAL METHODS AP, P203