INTEGRALITY AND NORMALIZING EXTENSIONS OF RINGS

被引:12
作者
LORENZ, M
PASSMAN, DS
机构
[1] University of Wisconsin-Madison, Madison
基金
美国国家科学基金会;
关键词
D O I
10.1016/0021-8693(79)90280-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we prove an integrality result for certain finite normalizing ring extensions. In particular this applies to the extension R ⊂R * G, where R is any ring and R * G denotes a crossed product of the finite group G over R. This result is then used to prove a Going Up Theorem for such crossed products. Indeed we show that if A is a G-prime ideal of R and if P is a prime ideal of R * G with P ∩ R ⊂A, then there exists a prime ideal Q of R * G with P ⊂Q and Q ∩ R = A. © 1979.
引用
收藏
页码:289 / 297
页数:9
相关论文
共 7 条
[1]  
AMITSUR SA, 1951, AM MATH SOC, V2, P538
[2]  
FARKAS DR, UNPUBLISHED
[3]   PRIMITIVE IDEALS OF GROUP ALGEBRAS OF SUPERSOLUBLE GROUPS [J].
LORENZ, M .
MATHEMATISCHE ANNALEN, 1977, 225 (02) :115-122
[4]  
LORENZ M, ISRAEL J MATH
[5]   FINITE EXTENSIONS ARE INTEGRAL [J].
PARE, R ;
SCHELTER, W .
JOURNAL OF ALGEBRA, 1978, 53 (02) :477-479
[6]  
Procesi C., 1973, RINGS POLYNOMIAL IDE
[7]   NON-COMMUTATIVE AFFINE PI RINGS ARE CATENARY [J].
SCHELTER, W .
JOURNAL OF ALGEBRA, 1978, 51 (01) :12-18