GODUNOV TYPE METHOD ON NON-STRUCTURED MESHES FOR 3-DIMENSIONAL MOVING BOUNDARY-PROBLEMS

被引:75
作者
NKONGA, B
GUILLARD, H
机构
[1] INRIA, centre de Sophia-Antipolis, 06902 Sophia-Antipolis Cedex
关键词
D O I
10.1016/0045-7825(94)90218-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a numerical method for the computation of compressible flows in domains whose boundaries move in a well defined predictable manner. The method uses the space-time formulation by Godunov while the discretization is conducted on non-structured tetrahedral meshes, using Roe's approximate Riemann solver, an implicit time stepping and a MUSCL-type interpolation. The computation of the geometrical parameters required to take into account the movement of the boundaries is described. Examples including the calculation of the flow in the cylinder of an internal combustion engine illustrates the possibilities of the method.
引用
收藏
页码:183 / 204
页数:22
相关论文
共 13 条
[1]  
DERVIEUX A, 1992, INRIA1703 RAPP RECH
[2]  
DERVIEUX A, 1987, PARTIAL DIFFERENTIAL, P33
[3]  
FEZOUI L, 1989, J COMPUT PHYS, V84
[4]  
FEZOUI L, 1988, INRIA358 RAPP
[5]  
GEORGE PL, 1989, INRIA1021 RAPP RECH
[6]  
Godunov S K, 1959, MAT SBORNIK, V47, P271
[7]  
GODUNOV SK, 1979, RESOLUTION NUMERIQUE
[8]   SELF-ADJUSTING GRID METHODS FOR ONE-DIMENSIONAL HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
HYMAN, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 50 (02) :235-269
[9]   Approximate Riemann solvers, parameter vectors, and difference schemes (Reprinted from the Journal of Computational Physics, vol 43, pg 357-372, 1981) [J].
Roe, PL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :250-258
[10]  
STEVE H, 1988, THESIS U PROVENCE AI