GENERATING FUNCTIONS FOR AFFINE SYMPLECTIC GROUP

被引:17
作者
BURDET, G [1 ]
PERRIN, M [1 ]
PERROUD, M [1 ]
机构
[1] UNIV MONTREAL,CTR RECH MATH,DEPT MATH,MONTREAL H3C 3J7,QUEBEC,CANADA
关键词
D O I
10.1007/BF01614222
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generating function notion is used to give a representation of the inhomogeneous symplectic group as group of affine canonical transformations. Then the classical action for linear mechanical systems, the Hamiltonians of which belong to the algebra h sp(2 n, R), is deduced; it is explicitely constructed for all the Hamiltonians belonging to some particular subalgebras of h sp(2 n, R). The metaplectic representation of W Sp(2 n, R) on L2(R) and the solutions of the Schrödinger equation for linear systems are also obtained in terms of generating functions. The Maslov index is explicitly constructed for the quantum corresponding sets of Hamiltonians considered in the classical case. © 1978 Springer-Verlag.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 13 条
[1]  
ARNOLD V, 1976, METHODES MATHEMATIQU
[2]   HAMILTONIANS OF SCHRODINGER ALGEBRA [J].
BURDET, G ;
PERRIN, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (10) :2172-2176
[3]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[4]   SCALE AND CONFORMAL TRANSFORMATIONS IN GALILEAN-COVARIANT FIELD-THEORY [J].
HAGEN, CR .
PHYSICAL REVIEW D, 1972, 5 (02) :377-&
[5]  
LERAY J, 1975, 1974 C INT CTR NAT R, V237, P253
[6]  
Maslov V.P., 1972, THEORIE PERTURBATION
[7]   LINEAR CANONICAL TRANSFORMATIONS AND THEIR UNITARY REPRESENTATIONS [J].
MOSHINSKY, M ;
QUESNE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (08) :1772-+
[8]  
NIEDERER U, 1973, HELV PHYS ACTA, V46, P191
[9]  
PERROUD M, 1977, HELV PHYS ACTA, V50, P233
[10]  
SHALE D., 1962, T AM MATH SOC, V103, P149, DOI 10.1090/S0002-9947-1962-0137504-6