Numerical simulation of macroscopic traffic equations

被引:71
作者
Helbing, D [1 ]
Treiber, M [1 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 2, D-7000 Stuttgart, Germany
关键词
D O I
10.1109/5992.790593
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
[No abstract available]
引用
收藏
页码:89 / 99
页数:11
相关论文
共 23 条
[1]  
Anderson D. A., 2020, COMPUTATIONAL FLUID, VFourth
[2]   WHAT DOES THE ENTROPY CONDITION MEAN IN TRAFFIC FLOW THEORY [J].
ANSORGE, R .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1990, 24 (02) :133-143
[3]  
Babcock P., 1984, TRANSP RES REC, V971, P80
[4]  
BUI DD, 1992, FHWATX9212327 TEX A
[5]   A finite difference approximation of the kinematic wave model of traffic flow [J].
Daganzo, CF .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1995, 29 (04) :261-276
[6]   Requiem for second-order fluid approximations of traffic flow [J].
Daganzo, CF .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1995, 29 (04) :277-286
[7]   Phase diagram of traffic states in the presence of inhomogeneities [J].
Helbing, D ;
Hennecke, A ;
Treiber, M .
PHYSICAL REVIEW LETTERS, 1999, 82 (21) :4360-4363
[8]   Derivation and empirical validation of a refined traffic flow model [J].
Helbing, D .
PHYSICA A, 1996, 233 (1-2) :253-282
[9]   Gas-kinetic-based traffic model explaining observed hysteretic phase transition [J].
Helbing, D ;
Treiber, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3042-3045
[10]   STRUCTURE AND PARAMETERS OF CLUSTERS IN TRAFFIC FLOW [J].
KERNER, BS ;
KONHAUSER, P .
PHYSICAL REVIEW E, 1994, 50 (01) :54-83