KINETIC CHARACTERIZATION OF RAT-BRAIN TYPE IIA SODIUM-CHANNEL ALPHA-SUBUNIT STABLY EXPRESSED IN A SOMATIC-CELL LINE

被引:27
作者
SARKAR, SN [1 ]
ADHIKARI, A [1 ]
SIKDAR, SK [1 ]
机构
[1] INDIAN INST SCI,MOLEC BIOPHYS UNIT,BANGALORE 560012,KARNATAKA,INDIA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1995年 / 488卷 / 03期
关键词
D O I
10.1113/jphysiol.1995.sp020996
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. The rat brain type IIA Na+ channel alpha-subunit was stably expressed in Chinese hamster ovary (CHO) cells. Current through the expressed Na+ channels was studied using the whole-cell configuration of the patch clamp technique. The transient Na+ current was sensitive to TTX and showed a bell-shaped peak current vs. membrane potential relation. 2. Na+ current inactivation was better described by the sum of two exponentials in the potential range -30 to +40 mV, with. a dominating fast component and a small slower component. 3. The steady-state inactivation, h(infinity), was related to potential by a Boltzmann distribution, underlying thr ee states of the inactivation gate. 4. Recovery of the channels from inactivation at different potentials in the range -70 to -120 mV were characterized by al? initial delay which decreased with hyperpolarization. The time course was well fitted by the sum of two exponentials. In this case the slower exponential was the major component, and both time constants decreased with hyperpolarization. 5. For a working description of the Na+ channel inactivation in this preparation, with a minimal deviation from the Hodgkin-Huxley model, a three-state scheme of the form O reversible arrow I-1 reversible arrow I-2 was proposed, replacing the original two-state scheme of the Hodgkin-Huxley model, and the rate constants are reported. 6. The instantaneous current-voltage relationship showed marked deviation from linearity and was satisfactorily fitted by the constant-field equation. 7. The time course of activation was described by an m(x) model. However, the best-fitted value of x varied with the membrane potential and had a mean value of 2. 8. Effective gating charge was determined to be 4.7e from the slope of the activation plot, plotted on a logarithmic scale. 9. The rate constants of activation, alpha(m) and beta(m), were determined. Their functional dependence on the membrane potential was investigated.
引用
收藏
页码:633 / 645
页数:13
相关论文
共 39 条
[1]   EFFECTS OF EXTERNAL POTASSIUM AND LONG DURATION VOLTAGE CONDITIONING ON AMPLITUDE OF SODIUM CURRENTS IN GIANT AXON OF SQUID, LOLIGO P5ALEI [J].
ADELMAN, WJ ;
PALTI, Y .
JOURNAL OF GENERAL PHYSIOLOGY, 1969, 54 (05) :589-&
[2]   A REINTERPRETATION OF MAMMALIAN SODIUM-CHANNEL GATING BASED ON SINGLE CHANNEL RECORDING [J].
ALDRICH, RW ;
COREY, DP ;
STEVENS, CF .
NATURE, 1983, 306 (5942) :436-441
[3]   FAST AND SLOW STEPS IN THE ACTIVATION OF SODIUM-CHANNELS [J].
ARMSTRONG, CM ;
GILLY, WF .
JOURNAL OF GENERAL PHYSIOLOGY, 1979, 74 (06) :691-711
[4]   DIFFERENTIAL REGULATION OF 3 SODIUM-CHANNEL MESSENGER-RNAS IN THE RAT CENTRAL NERVOUS-SYSTEM DURING DEVELOPMENT [J].
BECKH, S ;
NODA, M ;
LUBBERT, H ;
NUMA, S .
EMBO JOURNAL, 1989, 8 (12) :3611-3616
[5]   A 5-CONDUCTANCE MODEL OF THE ACTION-POTENTIAL IN THE RAT SYMPATHETIC NEURON [J].
BELLUZZI, O ;
SACCHI, O .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1991, 55 (01) :1-30
[6]   INACTIVATION OF SODIUM CHANNEL .1. SODIUM CURRENT EXPERIMENTS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :549-566
[7]   INHIBITORY MODULATION BY FMRFAMIDE OF THE VOLTAGE-GATED SODIUM CURRENT IN IDENTIFIED NEURONS IN LYMNAEA-STAGNALIS [J].
BRUSSAARD, AB ;
LODDER, JC ;
TERMAAT, A ;
DEVLIEGER, TA ;
KITS, KS .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 441 :385-404
[8]   CELLULAR AND MOLECULAR-BIOLOGY OF VOLTAGE-GATED SODIUM-CHANNELS [J].
CATTERALL, WA .
PHYSIOLOGICAL REVIEWS, 1992, 72 (04) :S15-S48
[9]   SLOW CHANGES IN MEMBRANE PERMEABILITY AND LONG-LASTING ACTION POTENTIALS IN AXONS PERFUSED WITH FLUORIDE SOLUTIONS [J].
CHANDLER, WK ;
MEVES, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1970, 211 (03) :707-&
[10]   INACTIVATION OF SODIUM CHANNELS - 2ND ORDER KINETICS IN MYELINATED NERVE [J].
CHIU, SY .
JOURNAL OF PHYSIOLOGY-LONDON, 1977, 273 (03) :573-596