EQUIVALENCE AND TRACES ON C-STAR-ALGEBRAS

被引:118
作者
CUNTZ, J
PEDERSEN, GK
机构
[1] TECH UNIV BERLIN,FACHBEREICH MATH,D-1000 BERLIN 12,FED REP GER
[2] UNIV COPENHAGEN,INST MATH,DK-2100 COPENHAGEN,DENMARK
关键词
D O I
10.1016/0022-1236(79)90108-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an equivalence relation among the positive elements in a C* and show that the algebra is (semi-) finite if and only if there is a separating family of (semi-) finite traces. Concentrating on simple, semi-finite C*-algebras we relate geometrical properties in the cone of equivalence classes to functional analytic properties of the algebra, such as the number of normalized traces and their possible values on a given element. The paper may be considered as an attempt to extend Murray and von Neumann's type and equivalence theory to C*-algebras. © 1979.
引用
收藏
页码:135 / 164
页数:30
相关论文
共 26 条
[1]  
BEHNKE H, 1972, J FUNT ANAL, V10, P204
[2]  
BLACKADAR B, 1979, TRACES SIMPLE AF C S
[3]  
BRATTELI O, 1972, T AM MATH SOC, V171, P195
[4]  
CUNTZ J, 1977, JUN P OP ALG THEIR A
[5]  
CUNTZ J, MATH ANN
[6]  
CUNTZ J, COMM MATH PHYS
[7]  
CUNTZ J, MATH SCAND
[8]  
DIXMIER J, 1964, CAHIERS SCI, V29
[9]   DERIVATIONS OF MATROID C]-ALGEBRAS .2. [J].
ELLIOTT, GA .
ANNALS OF MATHEMATICS, 1974, 100 (02) :407-422
[10]   CLASSIFICATION OF INDUCTIVE LIMITS OF SEQUENCES OF SEMISIMPLE FINITE-DIMENSIONAL ALGEBRAS [J].
ELLIOTT, GA .
JOURNAL OF ALGEBRA, 1976, 38 (01) :29-44