HIROTA SOLITONS IN THE AFFINE AND THE CONFORMAL AFFINE TODA MODELS

被引:51
作者
ARATYN, H [1 ]
CONSTANTINIDIS, CP [1 ]
FERREIRA, LA [1 ]
GOMES, JF [1 ]
ZIMERMAN, AH [1 ]
机构
[1] UNESP,INST FIS TEOR,BR-01405-900 SAO PAULO,BRAZIL
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(93)90008-D
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis.
引用
收藏
页码:727 / 770
页数:44
相关论文
共 15 条
[1]   KAC-MOODY CONSTRUCTION OF TODA TYPE FIELD-THEORIES [J].
ARATYN, H ;
FERREIRA, LA ;
GOMES, JF ;
ZIMERMAN, AH .
PHYSICS LETTERS B, 1991, 254 (3-4) :372-380
[2]  
Arfken G., 1985, MATH METHODS PHYS, V3rd, P957
[3]   CONFORMAL AFFINE SL2 TODA FIELD-THEORY [J].
BABELON, O ;
BONORA, L .
PHYSICS LETTERS B, 1990, 244 (02) :220-226
[4]  
Bullough R, 1980, SOLITONS TOPICS CURR
[5]   CONNECTION BETWEEN THE AFFINE AND CONFORMAL AFFINE TODA MODELS AND THEIR HIROTA SOLUTION [J].
CONSTANTINIDIS, CP ;
FERREIRA, LA ;
GOMES, JF ;
ZIMERMAN, AH .
PHYSICS LETTERS B, 1993, 298 (1-2) :88-94
[6]  
DOLDD A, 1976, LECTURE NOTES MATH, V515
[7]   THE FUSING RULE AND THE SCATTERING MATRIX OF AFFINE TODA THEORY [J].
FRING, A ;
OLIVE, DI .
NUCLEAR PHYSICS B, 1992, 379 (1-2) :429-447
[8]  
GELLMANN M, 1969, 3RD P HAW TOP C PART, P18
[9]  
GILLET H, 1992, COMMUNICATION
[10]   SOLITONS IN AFFINE TODA FIELD-THEORIES [J].
HOLLOWOOD, T .
NUCLEAR PHYSICS B, 1992, 384 (03) :523-540