SPECTRAL STATISTICS IN SEMICLASSICAL RANDOM-MATRIX ENSEMBLES

被引:74
作者
FEINGOLD, M
LEITNER, DM
WILKINSON, M
机构
[1] UNIV CALIF BERKELEY LAWRENCE BERKELEY LAB,BERKELEY,CA 94720
[2] UNIV CALIF BERKELEY,DEPT PHYS,BERKELEY,CA 94720
[3] UNIV STRATHCLYDE,DEPT PHYS & APPL PHYS,GLASGOW G4 0NG,SCOTLAND
关键词
D O I
10.1103/PhysRevLett.66.986
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel random-matrix ensemble is introduced which mimics the global structure inherent in the Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be in a regime with Wigner P(s) for systems with more than two freedoms.
引用
收藏
页码:986 / 989
页数:4
相关论文
共 21 条
[1]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE EQUATION IN A FINITE DOMAIN .1. 3-DIMENSIONAL PROBLEM WITH SMOOTH BOUNDARY SURFACE [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1970, 60 (02) :401-&
[2]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[3]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[5]  
BOHIGAS O, 1984, LECTURE NOTES PHYSIC, V209
[6]   STATISTICAL MEASURE FOR REPULSION OF ENERGY-LEVELS [J].
BRODY, TA .
LETTERE AL NUOVO CIMENTO, 1973, 7 (12) :482-484
[7]   SCALING BEHAVIOR OF LOCALIZATION IN QUANTUM CHAOS [J].
CASATI, G ;
GUARNERI, I ;
IZRAILEV, F ;
SCHARF, R .
PHYSICAL REVIEW LETTERS, 1990, 64 (01) :5-8
[8]   SCALING PROPERTIES OF BAND RANDOM MATRICES [J].
CASATI, G ;
MOLINARI, L ;
IZRAILEV, F .
PHYSICAL REVIEW LETTERS, 1990, 64 (16) :1851-1854
[9]   ANDERSON LOCALIZATION FOR ONE-DIMENSIONAL AND QUASI-ONE-DIMENSIONAL SYSTEMS [J].
DELYON, F ;
LEVY, Y ;
SOUILLARD, B .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (3-4) :375-388
[10]  
DEUTSCH JA, IN PRESS