NECESSARY AND SUFFICIENT CONDITION FOR LOCAL MINIMA OF A CLASS OF NONCONVEX QUADRATIC PROGRAMS

被引:4
作者
CAO, JM [1 ]
机构
[1] SW JIAOTONG UNIV,DEPT TRANSPORTAT ENGN,CHENGDU 610031,PEOPLES R CHINA
关键词
NONCONVEX QUADRATIC PROGRAMMING; LOCAL MINIMUM; NP-COMPLETE; NECESSARY AND SUFFICIENT CONDITION;
D O I
10.1007/BF01585567
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The author (1992, 1993) earlier studied the equivalence of a class of 0-1 quadratic programs and their relaxed problems. Thus, a class of combinatorial optimization problems can be solved by solving a class of nonconvex quadratic programs. In this paper, a necessary and sufficient condition for local minima of this class of nonconvex quadratic programs is given; this will be the foundation for study of algorithms.
引用
收藏
页码:403 / 411
页数:9
相关论文
共 12 条
[1]  
CAO JM, 1993, J SW JIAOTONG U, V1, P72
[2]  
CAO JM, 1992, OR DECISION MAKING, P142
[3]  
CONTESSE L, 1980, NUMER MATH, V34, P315, DOI 10.1007/BF01396705
[4]   LOCALLY UNIQUE SOLUTIONS OF QUADRATIC PROGRAMS, LINEAR AND NON-LINEAR COMPLEMENTARITY-PROBLEMS [J].
MANGASARIAN, OL .
MATHEMATICAL PROGRAMMING, 1980, 19 (02) :200-212
[5]  
MORE JJ, 1991, MATH PROGRAM, V49, P397
[6]   SOME NP-COMPLETE PROBLEMS IN QUADRATIC AND NONLINEAR-PROGRAMMING [J].
MURTY, KG ;
KABADI, SN .
MATHEMATICAL PROGRAMMING, 1987, 39 (02) :117-129
[7]  
Pardalos P., 1991, J GLOBAL OPTIM, V1, P15, DOI DOI 10.1007/BF00120662
[8]   OPEN QUESTIONS IN COMPLEXITY THEORY FOR NUMERICAL OPTIMIZATION [J].
PARDALOS, PM ;
VAVASIS, SA .
MATHEMATICAL PROGRAMMING, 1992, 57 (02) :337-339
[9]   CHECKING LOCAL OPTIMALITY IN CONSTRAINED QUADRATIC-PROGRAMMING IS NP-HARD [J].
PARDALOS, PM ;
SCHNITGER, G .
OPERATIONS RESEARCH LETTERS, 1988, 7 (01) :33-35
[10]  
PARDALOS PM, 1987, LECTURE NOTES COMPUT, V268