THE NONABELIAN TODA LATTICE-DISCRETE ANALOG OF THE MATRIX SCHRODINGER SPECTRAL PROBLEM

被引:55
作者
BRUSCHI, M [1 ]
MANAKOV, SV [1 ]
RAGNISCO, O [1 ]
LEVI, D [1 ]
机构
[1] IST NAZL FIS NUCL,ROME,ITALY
关键词
D O I
10.1063/1.524393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the discrete analog of the matrix Schrödinger spectral problem and derive the simplest nonlinear differential-difference equation associated to such problem solvable by the inverse spectral transform. We also display the one and two soliton solution for this equation and tersely discuss their main features. © 1980 American Institute of Physics.
引用
收藏
页码:2749 / 2753
页数:5
相关论文
共 7 条
[1]   NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY INVERSE SPECTRAL TRANSFORM .2. [J].
CALOGERO, F ;
DEGASPERIS, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 39 (01) :1-54
[2]  
FLASCHKA H, 1974, PHYS REV B, V9, P1925
[3]  
MANAKOV SV, 1974, ZH EKSP TEOR FIZ+, V67, P543
[4]  
POLYAKOV, COMMUNICATION
[5]  
THAKTADJAN LA, COMMUNICATION
[6]  
TODA M, 1970, PROGR THEOR PHYS SUP, V45, P174, DOI 10.1143/PTPS.45.174
[7]  
Zakharov VE., 1978, JETP, V47, P1017