A MATRIX SOLUTION TO THE INVERSE PERRON-FROBENIUS PROBLEM

被引:38
作者
GORA, P
BOYARSKY, A
机构
关键词
D O I
10.2307/2160316
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a probability density function on the unit interval I. The inverse Perron-Frobenius problem involves determining a transformation tau: I --> I such that the one-dimensional dynamical system x(i+1) = tau(x(i)) has f as its unique invariant density function. A matrix method is developed that provides a simple relationship between tau and f, where f is any piecewise constant density function. The result is useful for modelling and predicting chaotic data.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 5 条
[1]  
Boyarsky A., 1981, ADV APPL MATH, V2, P284
[2]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[3]   THE SOLUTION OF THE INVERSE PROBLEM FOR THE PERRON-FROBENIUS EQUATION [J].
ERSHOV, SV ;
MALINETSKII, GG .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1988, 28 (05) :136-141
[4]   CONSTRUCTION OF ERGODIC TRANSFORMATIONS [J].
FRIEDMAN, N ;
BOYARSKY, A .
ADVANCES IN MATHEMATICS, 1982, 45 (03) :213-254
[5]   INVARIANT DENSITIES FOR RANDOM MAPS OF THE INTERVAL [J].
PELIKAN, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 281 (02) :813-825