COMPRESSIBLE LINEAR AND NONLINEAR RESISTIVE MHD CALCULATIONS IN TOROIDAL GEOMETRY

被引:64
作者
CHARLTON, LA [1 ]
HOLMES, JA [1 ]
LYNCH, VE [1 ]
CARRERAS, BA [1 ]
机构
[1] EURATOM,UKAEA,FUS ASSOC,CULHAM LAB,ABINGDON OX14 3DB,OXON,ENGLAND
关键词
D O I
10.1016/0021-9991(90)90102-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A formalism has been developed and incorporated in the computer code FAR to solve the magnetohydrodynamic (MHD) equations compressibly or incompressibly for either ideal or resistive modes. A linear subset or the full nonlinear set of equations can be solved, in toroidal geometry, with no ordering assumptions. Significant features of the formalism include (1) the addition of compressibility by adding two equations to a basic incompressible set, (2) the ability of the code to converge very rapidly for linear calculations, and (3) the use of a diffusive term in the evaluation of the compressible part of the velocity. This term damps the short-wavelength waves and allows a time step size which is comparable to that needed for incompressible simulations. © 1990.
引用
收藏
页码:270 / 293
页数:24
相关论文
共 17 条
[1]   MECHANISM FOR RAPID SAWTOOTH CRASHES IN TOKAMAKS [J].
AYDEMIR, AY .
PHYSICAL REVIEW LETTERS, 1987, 59 (06) :649-652
[2]   NUMERICAL-CALCULATIONS USING THE FULL MHD EQUATIONS IN TOROIDAL GEOMETRY [J].
CHARLTON, LA ;
HOLMES, JA ;
HICKS, HR ;
LYNCH, VE ;
CARRERAS, BA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 63 (01) :107-129
[3]  
Grimm R.C., 1976, CONTROLLED FUSION ME, P253, DOI [10.1016/b978-0-12-460816-0.50012-9, DOI 10.1016/B978-0-12-460816-0.50012-9]
[4]   IDEAL MHD STABILITY CALCULATIONS IN AXISYMMETRIC TOROIDAL COORDINATE SYSTEMS [J].
GRIMM, RC ;
DEWAR, RL ;
MANICKAM, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (01) :94-117
[5]   ERATO STABILITY CODE [J].
GRUBER, R ;
TROYON, F ;
BERGER, D ;
BERNARD, LC ;
ROUSSET, S ;
SCHREIBER, R ;
KERNER, W ;
SCHNEIDER, W ;
ROBERTS, KV .
COMPUTER PHYSICS COMMUNICATIONS, 1981, 21 (03) :323-371
[6]   SEMIIMPLICIT METHOD FOR LONG-TIME SCALE MAGNETOHYDRODYNAMIC COMPUTATIONS IN 3 DIMENSIONS [J].
HARNED, DS ;
SCHNACK, DD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 65 (01) :57-70
[7]   3D NON-LINEAR CALCULATIONS OF RESISTIVE TEARING MODES [J].
HICKS, HR ;
CARRERAS, B ;
HOLMES, JA ;
LEE, DK ;
WADDELL, BV .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (01) :46-69
[8]   A COMPARISON OF THE FULL AND REDUCED SETS OF MAGNETOHYDRODYNAMIC EQUATIONS FOR RESISTIVE TEARING MODES IN CYLINDRICAL GEOMETRY [J].
HOLMES, JA ;
CARRERAS, BA ;
HENDER, TC ;
HICKS, HR ;
LYNCH, VE ;
MASDEN, BF .
PHYSICS OF FLUIDS, 1983, 26 (09) :2569-2577
[9]   FINITE BETA EFFECTS ON THE NON-LINEAR EVOLUTION OF THE (M=1 - N=1) MODE IN TOKAMAKS [J].
HOLMES, JA ;
CARRERAS, BA ;
HICKS, HR ;
LYNCH, VE ;
ROTHE, KE .
PHYSICS OF FLUIDS, 1982, 25 (05) :800-811
[10]  
HOLMES JA, 1987, 12TH P C NUM SIM PLS