STATIONARY PROBABILITY-DISTRIBUTION NEAR STABLE LIMIT-CYCLES FAR FROM HOPF-BIFURCATION POINTS

被引:22
作者
DYKMAN, M [1 ]
CHU, XL [1 ]
ROSS, J [1 ]
机构
[1] STANFORD UNIV,DEPT CHEM,STANFORD,CA 94305
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 03期
关键词
D O I
10.1103/PhysRevE.48.1646
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain analytic results for the stationary probability distribution in the vicinity of a stable limit cycle for Markov systems described by a Fokker-Planck equation or a birth-death master equation. The results apply best for ranges of parameters removed from Hopf bifurcation points. As a by-product, we demonstrate that there holds a Liouville-like theorem for the stationary probability distribution: the product of the velocity along the limit cycle times the area of the cross section of the probability distribution transverse to the cycle is a constant. A numerical simulation of a chemical model system with a limit cycle shows good agreement with the analytic results.
引用
收藏
页码:1646 / 1654
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 1984, SPRINGER SERIES SYNE
[2]  
EBELING W, 1983, STUD BIOPHYS, V98, P147
[3]   TIME-PERIODIC OSCILLATIONS IN A MODEL FOR THE RESPIRATORY PROCESS OF A BACTERIAL CULTURE [J].
FAIREN, V ;
VELARDE, MG .
JOURNAL OF MATHEMATICAL BIOLOGY, 1979, 8 (02) :147-157
[4]   STOCHASTIC-ANALYSIS OF A HOPF-BIFURCATION - MASTER EQUATION APPROACH [J].
FRAIKIN, A ;
LEMARCHAND, H .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (3-4) :531-551
[5]  
GANG H, 1990, PHYS REV A, V41, P2231
[6]  
Graham R., 1989, NOISE NONLINEAR DYNA
[7]   COOPERATIVE PHENOMENA IN SYSTEMS FAR FROM THERMAL EQUILIBRIUM AND IN NONPHYSICAL SYSTEMS [J].
HAKEN, H .
REVIEWS OF MODERN PHYSICS, 1975, 47 (01) :67-121
[8]  
LAX M, 1968, STATISTICAL PHYSICS
[9]   TEMPORAL COHERENCE OF OSCILLATORY MODES OF NONLINEAR REACTIVE PROCESSES - LOCAL THEORY [J].
NAZAREA, AD ;
NICOLIS, G .
MOLECULAR PHYSICS, 1975, 29 (05) :1557-1567
[10]   STOCHASTIC ANALYSIS OF A NON-EQUILIBRIUM PHASE-TRANSITION - SOME EXACT RESULTS [J].
NICOLIS, G ;
TURNER, JW .
PHYSICA A, 1977, 89 (02) :326-338