Interactions between ribosomal protein L11 and a domain of large subunit rRNA have been highly conserved and are essential for efficient protein synthesis. To study the effects of L11 on rRNA folding, a homolog of the Escherichia coli L11 gene has been amplified from Bacillus stearothermophilus DNA and cloned into a phage T7 polymerase-based expression system. The expressed protein is 93% homologous to the L11 homolog from Bacillus subtilis, denatures at temperatures above 72 degrees C, and has nearly identical rRNA binding properties as the Escherichia coli L11 in terms of RNA affinity constants and their dependences on temperature, Mg2+ concentration, monovalent cation, and RNA mutations. Mg2+ and NH4+ are specifically bound by the RNA-protein complex, with apparent ion-RNA affinities of 1.6 mM(-1) and 19 M(-1), respectively, at 0 degrees C. The effect of the thermostable L11 on the unfolding of a 60 nucleotide rRNA fragment containing its binding domain has been examined in melting experiments. The lowest temperature RNA transition, which is attributed to tertiary structure unfolding, is stabilized by similar to 25 degrees C, and the interaction has an intrinsic enthalpy of similar to 13 kcal/mol. The thermal stability of the protein-RNA complex is enhanced by increasing Mg2+ concentration and by NH4+ relative to Na+. Thus L11, NH4+, and Mg2+ all bind and stabilize the same rRNA tertiary interactions, which are conserved and presumably important for ribosome function.