APPLICATION OF NEURAL NETWORKS IN TARGET TRACKING DATA FUSION

被引:52
作者
CHIN, L
机构
[1] Oregon State Univ, Corvallis, United States
关键词
D O I
10.1109/7.250437
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Kalman filtering is a fundamental building block of most multiple-target tracking (MTT) algorithms. The other building block usually involves some type of data association schemes. Here it is proposed to incorporate a neural network into the normal Kalman filter configuration such that the neural network provides the adaptive capability the filter needs. As such, the estimation error of the Kalman filter would be reduced, hence improving the MTT solution. Simulation results have shown that this claim is valid.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 23 条
[1]  
Bar-Shalom Y., 1990, MULTITARGET MULTISEN
[2]   TRACKING IN A CLUTTERED ENVIRONMENT WITH PROBABILISTIC DATA ASSOCIATION [J].
BARSHALOM, Y ;
TSE, E .
AUTOMATICA, 1975, 11 (05) :451-460
[3]   VARIABLE DIMENSION FILTER FOR MANEUVERING TARGET TRACKING [J].
BARSHALOM, Y ;
BIRMIWAL, K .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1982, 18 (05) :621-629
[4]  
BARSHALOM Y, 1988, TRACKING DATA ASS
[5]  
Blackman S., 1986, MULTIPLE TARGET TRAC
[6]  
BOGLER PL, 1990, RADAR PRINCIPLES APP
[7]   KALMAN FILTER BASED TRACKING SCHEME WITH INPUT ESTIMATION [J].
CHAN, YT ;
HU, AGC ;
PLANT, JB .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1979, 15 (02) :237-244
[8]  
CHANG CB, 1984, IEEE T AUTOMAT CONTR, V29, P98, DOI 10.1109/TAC.1984.1103466
[9]  
CHIN L, 1992, P IEEE INT C INT FEB
[10]   MANEUVERING TARGET TRACKING USING ADAPTIVE STATE ESTIMATION [J].
GHOLSON, NH ;
MOOSE, RL .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1977, 13 (03) :310-317