TIME-STABLE BOUNDARY-CONDITIONS FOR FINITE-DIFFERENCE SCHEMES SOLVING HYPERBOLIC SYSTEMS - METHODOLOGY AND APPLICATION TO HIGH-ORDER COMPACT SCHEMES

被引:417
作者
CARPENTER, MH
GOTTLIEB, D
ABARBANEL, S
机构
[1] BROWN UNIV,DIV APPL MATH,PROVIDENCE,RI 02912
[2] TEL AVIV UNIV,SCH MATH SCI,DEPT APPL MATH,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1006/jcph.1994.1057
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First a proper summation-by-parts formula is found for the approximate derivative. A ''simultaneous approximation term'' is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach. (C) 1994 Academic Press, Inc.
引用
收藏
页码:220 / 236
页数:17
相关论文
共 9 条
[1]   STABLE AND ACCURATE BOUNDARY TREATMENTS FOR COMPACT, HIGH-ORDER FINITE-DIFFERENCE SCHEMES [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (1-3) :55-87
[2]   THE STABILITY OF NUMERICAL BOUNDARY TREATMENTS FOR COMPACT HIGH-ORDER FINITE-DIFFERENCE SCHEMES [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (02) :272-295
[3]  
CARPENTER MH, 1991, NCASE9171 REP
[4]  
FUNARO D, 1988, MATH COMPUT, V51, P599, DOI 10.1090/S0025-5718-1988-0958637-X
[5]  
GUSTAFSSON B, 1975, MATH COMPUT, V29, P396, DOI 10.1090/S0025-5718-1975-0386296-7
[6]  
GUSTAFSSON B, 1972, MATH COMPUT, V26, P649, DOI 10.1090/S0025-5718-1972-0341888-3
[7]  
Kreiss H.-O., 1974, MATH ASPECTS FINITE
[8]  
STRAND B, 1991, UNPUB
[9]  
TREFETHEN LN, 1985, MATH COMPUT, V45, P279, DOI 10.1090/S0025-5718-1985-0804924-2