MONOTONICITY PROPERTIES OF THE TODA FLOW, THE QR-FLOW, AND SUBSPACE ITERATION

被引:7
作者
LAGARIAS, JC
机构
关键词
TODA FLOW; QR-FLOW; QR-ALGORITHM; SUBSPACE ITERATION; RITZ VALUE;
D O I
10.1137/0612032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X(t) denote the Toda flow on the space of n x n matrices, with X(0) a symmetric matrix, and let X(r)(t) denote the r x r upper left corner principal submatrix of X(t), i.e., X(r)(t) = E(r)(T)X(t)E(r) where E(r) = [0r(I)]. Then the r ordered eigenvalues lambda-1(X(r)(t)) greater-than-or-equal-to lambda-2(X(r)(t)) greater-than-or-equal-to ... greater-than-or-equal-to lambda-r(X(r)(t)) of X(r)(t) are each a nondecreasing function of t, for 1 less-than-or-equal-to r less-than-or-equal-to n. A similar result is proved for the QR-flow Y(t) = exp (X(t)), for the eigenvalues of Y(r)(t) = E(r)(T)Y(t)E(r). For any generalized Toda flow f(X(t)) with f(.) a nondecreasing function, it is shown that Tr(E(r)(T)f(X(t))E(r)) is a nondecreasing function of t. The QR-flow inequalities are used to show that the Ritz values of a symmetric matrix X on a subspace are nondecreasing under subspace iteration.
引用
收藏
页码:449 / 462
页数:14
相关论文
共 35 条
[1]   CONCAVITY OF CERTAIN MAPS ON POSITIVE DEFINITE MATRICES AND APPLICATIONS TO HADAMARD PRODUCTS [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 26 (AUG) :203-241
[2]  
Bellman R., 1960, INTRO MATRIX ANAL, DOI [10.1137/1.9781611971170.fm, DOI 10.1137/1.9781611971170.FM]
[3]  
BENDAT J, 1955, T AM MATH SOC, V797, P58
[4]   A HAMILTONIAN QR ALGORITHM [J].
BYERS, R .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (01) :212-229
[5]   THE GENERALIZED TODA FLOW, THE QR ALGORITHM AND THE CENTER MANIFOLD THEORY [J].
CHU, MT .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (02) :187-201
[6]   ASYMPTOTIC ANALYSIS OF TODA LATTICE ON DIAGONALIZABLE MATRICES [J].
CHU, MT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (02) :193-201
[7]  
CHU MT, 1984, SIAM J MATH ANAL, V15, P187
[8]  
Davis C., 1957, P AM MATH SOC, V8, P42, DOI DOI 10.2307/2032808
[9]  
DAVIS C, 1963, P S PURE MATH, V7, P187
[10]   THE TODA FLOW ON A GENERIC ORBIT IS INTEGRABLE [J].
DEIFT, P ;
LI, LC ;
NANDA, T ;
TOMEI, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :183-232