THE NUMBER OF SMALLEST KNOTS ON THE CUBIC LATTICE

被引:23
作者
DIAO, YN
机构
[1] Department of Mathematics, Kennesaw State College, Marietta, 30061, Georgia
关键词
KNOTS; KNOTTED POLYGONS; CUBIC LATTICE; SELF-AVOIDING WALKS;
D O I
10.1007/BF02188227
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been shown that the smallest knots on the cubic lattice are all trefoils of length 24. In this paper, we show that the number of such unrooted knots on the cubic lattice is 3496.
引用
收藏
页码:1247 / 1254
页数:8
相关论文
共 7 条
[1]  
[Anonymous], 1993, SELF AVOIDING WALK
[2]  
Diao Y., 1993, J KNOT THEOR RAMIF, V02, P413, DOI [10.1142/s0218216593000234, DOI 10.1142/S0218216593000234]
[3]   ON NUMBER OF SELF-AVOIDING WALKS [J].
KESTEN, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (07) :960-&
[4]   KNOTS IN RANDOM-WALKS [J].
PIPPENGER, N .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) :273-278
[5]   KNOTS IN SELF-AVOIDING WALKS [J].
SUMNERS, DW ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1689-1694
[6]   NUMBER OF SELFAVOIDING RINGS ON A LATTICE [J].
SYKES, MF ;
WATTS, MG ;
MARTIN, JL ;
MCKENZIE, DS .
JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (05) :661-&
[7]  
[No title captured]