FRACTIONAL CORRELATION

被引:141
作者
MENDLOVIC, D
OZAKTAS, HM
LOHMANN, AW
机构
[1] BILKENT UNIV, DEPT ELECT ENGN, BILKENT 06533, TURKEY
[2] UNIV ERLANGEN NURNBERG, W-8520 ERLANGEN, GERMANY
关键词
FOURIER OPTICS; OPTICAL INFORMATION PROCESSING; FRACTIONAL FOURIER TRANSFORMS; CORRELATION;
D O I
10.1364/AO.34.000303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, optical interpretations of the fractional-Fourier-transform operator have been introduced. On the basis of this operator the fractional correlation operator is defined in two different ways that are both consistent with the definition of conventional correlation. Fractional correlation is not always a shift-invariant operation. This property leads to some new applications for fractional correlation as shift-variant image detection. A bulk-optics implementation of fractional correlation is suggested and demonstrated with computer simulations.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 24 条
[1]  
ABRAMOWVITZ M, 1970, HDB MATH FUNCTIONS
[2]   WIGNER DISTRIBUTION FUNCTION AND ITS OPTICAL PRODUCTION [J].
BARTELT, HO ;
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1980, 32 (01) :32-38
[3]  
BASTIAANS MJ, 1979, J OPT SOC AM, V69, P1710, DOI 10.1364/JOSA.69.001710
[4]   WIGNER DISTRIBUTION FUNCTION APPLIED TO OPTICAL SIGNALS AND SYSTEMS [J].
BASTIAANS, MJ .
OPTICS COMMUNICATIONS, 1978, 25 (01) :26-30
[5]  
CLAASEN TACM, 1980, PHILIPS J RES, V35, P217
[6]  
CLAASEN TACM, 1980, PHILIPS J RES, V35, P276
[7]   SPACE-VARIANT FRESNEL TRANSFORM OPTICAL CORRELATOR [J].
DAVIS, JA ;
COTTRELL, DM ;
NESTOROVIC, N ;
HIGHNOTE, SM .
APPLIED OPTICS, 1992, 31 (32) :6889-6893
[8]   REPRESENTATIONS OF SPACE-VARIANT OPTICAL SYSTEMS USING VOLUME HOLOGRAMS [J].
DEEN, LM ;
WALKUP, JF ;
HAGLER, MO .
APPLIED OPTICS, 1975, 14 (10) :2438-2446
[9]  
GOODMAN JW, 1968, INTRO FOURIER OPTICS, pCH7
[10]  
KRILE TF, 1977, APPL OPTICS, V16, P3131, DOI 10.1364/AO.16.003131