NUMERICAL-SOLUTION OF THE GELFAND-LEVITAN EQUATION

被引:14
作者
HALD, OH
机构
[1] Department of Mathematics University of California, Berkeley
关键词
D O I
10.1016/0024-3795(79)90123-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse Sturm-Liouville problem is solved by using the Gel'fand-Levitan equation. The equation is discretized by the trapezoidal rule and the problem reduced to solving a sequence of systems of linear equations. The convergence of the method is established. It is shown that the problem can be arbitrarily ill conditioned. Finally, the accuracy of the method is illustrated by two numerical examples. © 1979.
引用
收藏
页码:99 / 111
页数:13
相关论文
共 10 条
[1]  
BOOR CD, 1978, LINEAR ALGEBRA APPL, V21, P245, DOI 10.1016/0024-3795(78)90086-1
[3]  
Gelfand I.M., 1955, T AM MATH SOC, V1, P253
[4]  
HALD OH, 1978, MATH COMPUT, V32, P687, DOI 10.1090/S0025-5718-1978-0501963-2
[5]   INVERSE STURM - LIOUVILLE PROBLEM WITH SYMMETRIC POTENTIALS [J].
HALD, OH .
ACTA MATHEMATICA, 1978, 141 (3-4) :263-291
[6]  
HOCHSTADT H, 1973, P NAT ACAD SCI US, V72, P2496
[7]  
Levitan B., 1968, AM MATH SOC, V68, P1
[8]  
WILKINSON JH, 1971, LINEAR ALGEBRA HDB A, V2
[9]  
YEN A, 1978, THESIS U CALIFORNIA
[10]  
1951, TABLES RELATING MATH