NONPERTURBATIVE SOLUTION OF THE ISING-MODEL ON A RANDOM SURFACE

被引:223
作者
GROSS, DJ
MIGDAL, AA
机构
关键词
D O I
10.1103/PhysRevLett.64.717
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-matrix-model representation of the Ising model on a random surface is solved exactly to all orders in the genus expansion. The partition function obeys a fourth-order nonlinear differential equation as a function of the string coupling constant. This equation differs from that derived for the k=3 multicritical one-matrix model, thus disproving that this model describes the Ising model. A similar equation is derived for the Yang-Lee edge singularity on a random surface, and is shown to agree with the k=3 multicritical one-matrix model. © 1990 The American Physical Society.
引用
收藏
页码:717 / 720
页数:4
相关论文
共 14 条
[1]   ISING-MODEL OF A RANDOMLY TRIANGULATED RANDOM SURFACE AS A DEFINITION OF FERMIONIC STRING THEORY [J].
BERSHADSKY, MA ;
MIGDAL, AA .
PHYSICS LETTERS B, 1986, 174 (04) :393-398
[2]  
BOULATOV D, 1987, PHYS LETT B, V186, P369
[3]  
BREZIN E, IN PRESS ECOLE NORMA
[4]   CONFORMAL-INVARIANCE AND THE YANG-LEE EDGE SINGULARITY IN 2 DIMENSIONS [J].
CARDY, JL .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1354-1356
[5]  
DOUGLAS E, 1989, IN PRESS
[6]  
GROSS D, 1989, IN PRESS
[7]  
GROSS D, 1989, PUPT1098 PRINC U REP
[8]   ISING-MODEL ON A DYNAMIC PLANAR RANDOM LATTICE - EXACT SOLUTION [J].
KAZAKOV, VA .
PHYSICS LETTERS A, 1986, 119 (03) :140-144
[9]  
KAZAKOV VA, 1989, NBIHE8925 NIELS BOHR
[10]   FRACTAL STRUCTURE OF 2D - QUANTUM-GRAVITY [J].
KNIZHNIK, VG ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
MODERN PHYSICS LETTERS A, 1988, 3 (08) :819-826