RELATIVISTIC RING EQUATIONS .I. A PERTURBATIVE APPROACH

被引:6
作者
BAUS, M
机构
[1] Faculté des Sciences, Université Libre de Bruxelles
来源
PHYSICA | 1969年 / 43卷 / 03期
关键词
D O I
10.1016/0031-8914(69)90171-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a perturbative approach the finite frequency collision operator for a homogeneous relativistic plasma with electromagnetic interactions is computed within the ring approximation. The kinetic equation for the particle momentum distribution and the radiation transfer equation for the electromagnetic field are derived for various cases. For a strongly stable system previous results are recovered but are shown to be incomplete. Specifically relativistic contributions to the kinetic equation from branch cuts and undamped plasma waves which have hitherto been neglected are discussed. We also derive the coupled system of ring equations for unstable relativistic plasmas. © 1969.
引用
收藏
页码:321 / &
相关论文
共 31 条
[1]   RELATIVISTIC CONTRIBUTION TO LANDAU DAMPING [J].
AARON, R ;
CURRIE, D .
PHYSICS OF FLUIDS, 1966, 9 (07) :1423-&
[2]   APPROACH TO STABILITY OF A PLASMA [J].
ABRAHAM, BW .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (04) :630-&
[3]  
BALESCU R, 1967, B CL SCI AC ROY BELG, V53, P1043
[4]  
BALESCU R, 1963, STATISTICAL MECHANIC
[5]  
BALESCU R, 1966, STATISTICAL MECHANIC
[6]  
BALESCU R, 1969, PHYSICA, V38, P119
[7]   RELATIVISTIC RING EQUATIONS .2. A NON-PERTURBATIVE APPROACH [J].
BAUS, M .
PHYSICA, 1969, 43 (04) :517-&
[8]  
BAUS M, 1967, B CL SCI AC ROY BELG, V53, P1291
[9]  
BAUS M, 1967, B CL SCI AC ROY BELG, V53, P1352
[10]  
BAUS M, 1966, P INT SCH NONLINEAR