LEVEL REPULSION NEAR INTEGRABILITY - A RANDOM MATRIX ANALOGY

被引:31
作者
CAURIER, E
GRAMMATICOS, B
RAMANI, A
机构
[1] UNIV PARIS 07,PHYS NUCL LAB,F-75251 PARIS,FRANCE
[2] ECOLE POLYTECH,CTR PHYS THEOR,F-91128 PALAISEAU,FRANCE
[3] UNIV LOUIS PASTEUR STRASBOURG,PHYS NUCL THEOR GRP,F-67027 STRASBOURG,FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 21期
关键词
D O I
10.1088/0305-4470/23/21/029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the analogy between the statistics of the levels of quantum Hamiltonians and the eigenvalues of random matrices the authors use (an appropriate choice of) the latter in order to study the transition region near integrability. They show that the nearest-neighbour spacing distribution is linear for small spacings while the inverse of its slope is proportional to the amplitude of the (integrability-destroying) perturbation.
引用
收藏
页码:4903 / 4909
页数:7
相关论文
共 26 条
[1]  
[Anonymous], 1967, RANDOM MATRICES
[2]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[3]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[5]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[6]  
BOHIGAS O, 1984, LECT NOTES PHYS, V209, P1
[7]   STATISTICAL MEASURE FOR REPULSION OF ENERGY-LEVELS [J].
BRODY, TA .
LETTERE AL NUOVO CIMENTO, 1973, 7 (12) :482-484
[8]   ENERGY-LEVEL STATISTICS OF INTEGRABLE QUANTUM-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1350-1353
[9]   EXTREME LEVEL REPULSION FOR CHAOTIC QUANTUM HAMILTONIANS [J].
CAURIER, E ;
GRAMMATICOS, B .
PHYSICS LETTERS A, 1989, 136 (7-8) :387-390
[10]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+