USING ITERATED FUNCTION SYSTEMS TO MODEL DISCRETE SEQUENCES

被引:134
作者
MAZEL, DS [1 ]
HAYES, MH [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH ELECT ENGN,ATLANTA,GA 30332
关键词
D O I
10.1109/78.143444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, two iterated function system (IFS) models are explored for the representation of single-valued discrete-time sequences: the self-affine fractal model and the piecewise self-affine fractal model. We present algorithms, one of which is suitable for a multiprocessor implementation, for identification of the parameters of each model. Applications of these models to a variety of data types are given where signal-to-noise ratios are presented, quantization effects of the model parameters are investigated, and compression ratios are computed.
引用
收藏
页码:1724 / 1734
页数:11
相关论文
共 33 条
[1]  
[Anonymous], 1988, MODERN SPECTRAL ESTI
[2]  
[Anonymous], 1986, NUMERICAL RECIPES
[3]  
Barnsley M., 1988, SCI FRACTAL IMAGES
[4]   Harnessing chaos for image synthesis [J].
Barnsley, Michael F. ;
Jacquin, Arnaud ;
Malassenet, Francois ;
Reuter, Laurie ;
Sloan, Alan D. .
Computer Graphics (ACM), 1988, 22 (04) :131-140
[5]  
Barnsley M. F., 1989, CHAOS FRACTALS MATH
[6]   RECURRENT ITERATED FUNCTION SYSTEMS [J].
BARNSLEY, MF ;
ELTON, JH ;
HARDIN, DP .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :3-31
[7]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[8]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[9]  
BARNSLEY MF, 1988, P SPIE INT SOC OPT E, V1001
[10]  
Barnsley MF., 2014, FRACTALS EVERYWHERE