LANGUAGE OF QUANTUM SPACES AND QUANTUM GROUPS

被引:27
作者
MALTSINIOTIS, G
机构
关键词
D O I
10.1007/BF02096770
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the foundations of the differential calculus in quantum geometry. The notions of (differential) quantum space and cone are introduced. Generalizing a construction of Manin, to a quantum cone we associate the quantum group of its ''linear automorphisms preserving the differentials'' and deduce a de Rham complex on this group. We give examples of differential calculi on quantum hyperplanes and quantum linear groups.
引用
收藏
页码:275 / 302
页数:28
相关论文
共 54 条
[1]   FINITENESS OF A COHOMOLOGY ASSOCIATED WITH CERTAIN JACKSON INTEGRALS [J].
AOMOTO, K .
TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (01) :75-101
[2]   Q-ANALOG OF DE RHAM COHOMOLOGY ASSOCIATED WITH JACKSON INTEGRALS .2. [J].
AOMOTO, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1990, 66 (08) :240-244
[3]   Q-ANALOG OF DE RHAM COHOMOLOGY ASSOCIATED WITH JACKSON INTEGRALS .1. [J].
AOMOTO, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1990, 66 (07) :161-164
[4]   QUANTUM DEFORMATIONS OF GLN [J].
ARTIN, M ;
SCHELTER, W ;
TATE, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :879-895
[5]   DIAMOND LEMMA FOR RING THEORY [J].
BERGMAN, GM .
ADVANCES IN MATHEMATICS, 1978, 29 (02) :178-218
[6]  
BERNARD D, 1990, QUANTUM LIE ALGEBRAS
[7]  
Bourbaki N., 1970, ELEMENTS MATH ALGEBR
[8]   ON THE QUANTUM DIFFERENTIAL-CALCULUS AND THE QUANTUM HOLOMORPHICITY [J].
BRZEZINSKI, T ;
DABROWSKI, H ;
REMBIELINSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (01) :19-24
[9]  
BRZEZINSKI T, 1991, EXTERIOR BIALGEBRAS
[10]   BICOVARIANT DIFFERENTIAL-CALCULUS ON QUANTUM GROUPS SUQ(N) AND SOQ(N) [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
WATAMURA, S ;
WEICH, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (03) :605-641