STABILIZATION OF TRAJECTORIES FOR SYSTEMS WITH NONHOLONOMIC CONSTRAINTS

被引:162
作者
WALSH, G
TILBURY, D
SASTRY, S
MURRAY, R
LAUMOND, JP
机构
[1] CALTECH,DEPT MECH ENGN,PASADENA,CA 91125
[2] LAB AUTOMAT & ANALYSE SYST,TOULOUSE,FRANCE
基金
美国国家科学基金会;
关键词
Multivariable control systems;
D O I
10.1109/9.273373
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new technique for stabilizing nonholonomic systems to trajectories is presented. It is well known (see [2]) that such systems cannot be stabilized to a point using smooth static-state feedback. In this note, we suggest the use of control laws for stabilizing a system about a trajectory, instead of a point. Given a nonlinear system and a desired (nominal) feasible trajectory, the note gives an explicit control law which will locally exponentially stabilize the system to the desired trajectory. The theory is applied to several examples, including a car-like robot.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 13 条
[1]  
BASTIN G, 1991, ADV ROBOT CONTR
[2]  
BROCKETT R, 1981, CONTROL THEORY SINGU
[3]  
Brockett R. W., 1983, DIFFERENTIAL GEOMETR, V27, P181
[4]   DIRECT WAY TO STABILIZE CONTINUOUS-TIME AND DISCRETE-TIME LINEAR TIME-VARYING SYSTEMS [J].
CHENG, VHL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (04) :641-643
[5]  
CORON JM, 1991, GLOBAL ASYMPTOTIC ST
[6]  
DEWIT CC, 1991, IEEE C DECISION CONT, P692
[7]  
LAFFERRIERE G, 1990, MOTION PLANNING CONT
[8]  
LAUMOND J, 1991, IEEE INT C ADV ROBOT, P1033
[9]  
LAUMOND JP, 1991, IEEE INT C CONTR APP
[10]  
MURRAY RM, 1990, IEEE INT C DEC CONTR, P2097