APPLICATION OF A NON-LINEAR WKB-METHOD TO KORTEWEG-DEVRIES EQUATION

被引:31
作者
MIURA, RM
KRUSKAL, MD
机构
[1] PRINCETON UNIV,PROGRAM APPL PHYS,PRINCETON,NJ 08540
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY
[3] PRINCETON UNIV,PLASMA PHYS LAB,PRINCETON,NJ 08540
关键词
D O I
10.1137/0126036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:376 / 395
页数:20
相关论文
共 19 条
[1]  
Gardner C.S, 1960, NYO9082 COUR I MATH
[2]  
Korteweg D.J., 1895, PHILOS MAG, V39, P422, DOI [10.1080/14786449508620739, DOI 10.1080/14786449508620739]
[3]  
Kruskal M, 1963, P C MATH MOD PHYS SC, P17
[4]  
KRUSKAL MD, 1963, MATTQ21 PRINC PLASM, P301
[5]  
KRUSKAL MD, 1965, P IBM SCI COMP S LAR, P43
[6]   WEAKLY NON-LINEAR WAVES IN ROTATING FLUIDS [J].
LEIBOVICH, S .
JOURNAL OF FLUID MECHANICS, 1970, 42 :803-+
[7]   A PERTURBATION METHOD FOR NONLINEAR DISPERSIVE WAVE PROBLEMS [J].
LUKE, JC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 292 (1430) :403-&
[8]   KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS .2. EXISTENCE OF CONSERVATION LAWS AND CONSTANTS OF MOTION [J].
Miura, RM ;
GARDNER, CS ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (08) :1204-+
[9]  
NARIBOLI GA, 1969, 442 IOW STAT U ENG R
[10]   A NEW METHOD OF EXPANSION IN MATHEMATICAL PHYSICS .1. [J].
SANDRI, G .
NUOVO CIMENTO, 1965, 36 (01) :67-+