IDENTIFICATION OF A POSITIVE REGULATOR OF THE MU-MIDDLE OPERON

被引:37
作者
MATHEE, K [1 ]
HOWE, MM [1 ]
机构
[1] UNIV TENNESSEE,CTR HLTH SCI,DEPT MICROBIOL & IMMUNOL,MEMPHIS,TN 38163
关键词
D O I
10.1128/jb.172.12.6641-6650.1990
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Transcription of bacteriophage Mu occurs in a regulatory cascade consisting of three phases: early, middle, and late. The 1.2-kb middle transcript is initiated at P(m) and encodes the C protein, the activator of late transcription. A plasmid containing a P(m)-lacZ operon fusion was constructed. β-Galactosidase expression from the plasmid increased 23-fold after Mu prophage induction. Infection of plasmid-containing cells with λ phages carrying different segments of the Mu early region localized the P(m)-lacZ transactivation function to the region containing open reading frames E16 and E17. Deletion and linker insertion analyses of plasmids containing this region identified E17 as the transactivator; therefore we call this gene mor, for middle operon regulator. Expression of mor under the control of a T7 promoter and T7 RNA polymerase resulted in the production of a single polypeptide of 17 kDa as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Insertion of a linker into mor substantially reduced the ability of Mu to form plaques. When growth of the mor mutant was assayed in liquid, lysis was delayed by about 50 min and the burst size was approximately one-fifth that of wild-type Mu. The mor requirement for plaque formation and normal growth kinetics was abolished when C protein was provided in trans, indicating that the primary function of Mor is to provide sufficient C for late gene expression. Comparison of the predicted amino acid sequence of Mor with other proteins revealed that Mor and C share substantial amino acid sequence homology.
引用
收藏
页码:6641 / 6650
页数:10
相关论文
共 62 条
[1]   FEEDBACK-REGULATION OF RNA-POLYMERASE SUBUNIT SYNTHESIS AFTER THE CONDITIONAL OVERPRODUCTION OF RNA-POLYMERASE IN ESCHERICHIA-COLI [J].
BEDWELL, DM ;
NOMURA, M .
MOLECULAR & GENERAL GENETICS, 1986, 204 (01) :17-23
[2]   THE PROTEIN ID - A NEGATIVE REGULATOR OF HELIX-LOOP-HELIX DNA-BINDING PROTEINS [J].
BENEZRA, R ;
DAVIS, RL ;
LOCKSHON, D ;
TURNER, DL ;
WEINTRAUB, H .
CELL, 1990, 61 (01) :49-59
[3]  
BIRNBOIM HC, 1983, METHOD ENZYMOL, V100, P243
[4]  
BIRNBOIM HC, 1979, NUCLEIC ACIDS RES, V7, P1513
[5]  
BOLKER M, 1989, J BACTERIOL, V171, P2019
[6]   LYSOGENIZATION OF ESCHERICHIA-COLI HIM+, HIMA, AND HIMD HOSTS BY BACTERIOPHAGE MU [J].
BOURRET, RB ;
FOX, MS .
JOURNAL OF BACTERIOLOGY, 1988, 170 (04) :1672-1682
[7]   IDENTIFYING DETERMINANTS OF FOLDING AND ACTIVITY FOR A PROTEIN OF UNKNOWN STRUCTURE [J].
BOWIE, JU ;
SAUER, RT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (07) :2152-2156
[8]   TRAY PROTEINS OF F AND RELATED EPISOMES ARE MEMBERS OF THE ARC AND MNT REPRESSOR FAMILY [J].
BOWIE, JU ;
SAUER, RT .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 211 (01) :5-6
[9]  
BRENNAN RG, 1989, J BIOL CHEM, V264, P1903
[10]   CONSTRUCTION AND CHARACTERIZATION OF AMPLIFIABLE MULTICOPY DNA CLONING VEHICLES DERIVED FROM P15A CRYPTIC MINIPLASMID [J].
CHANG, ACY ;
COHEN, SN .
JOURNAL OF BACTERIOLOGY, 1978, 134 (03) :1141-1156