BIFURCATIONAL PRECEDENCES IN THE BRAIDS OF PERIODIC-ORBITS OF SPIRAL 3-SHOES IN DRIVEN OSCILLATORS

被引:14
作者
MCROBIE, FA
机构
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1992年 / 438卷 / 1904期
关键词
D O I
10.1098/rspa.1992.0125
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We conjecture the existence of a 3-striped spiral horseshoe under one iterate of the Poincare map that arises in the analysis of a class of driven oscillators. These systems represent escape from a smooth potential well under periodic forcing. We assume topological conjugacy between the flow of the differential equation and an idealized suspension of a spiral 3-shoe, and deduce bifurcational precedences by consideration of intertwining in the braid of periodic orbits. We argue that many significant subharmonic bifurcations observed in such systems can then be understood in terms of the creation of this 3-shoe.
引用
收藏
页码:545 / 569
页数:25
相关论文
共 22 条
[1]  
APOSTOL TM, 1980, INTRO ANAL NUMBER TH
[2]  
CVITANOVIC P, 1992, EPRI WORKSHOP APPLIC
[3]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[4]  
HOLMES P, 1985, ARCH RATION MECH AN, V90, P115
[5]   BIFURCATIONS OF ONE-DIMENSIONAL AND TWO-DIMENSIONAL MAPS [J].
HOLMES, P ;
WHITLEY, D .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 311 (1515) :43-102
[6]   ON THE ATTRACTING SET FOR DUFFING EQUATION .2. A GEOMETRICAL MODEL FOR MODERATE FORCE AND DAMPING [J].
HOLMES, P ;
WHITLEY, D .
PHYSICA D, 1983, 7 (1-3) :111-123
[7]   KNOTTED PERIODIC-ORBITS IN SUSPENSIONS OF SMALE HORSESHOE - PERIOD MULTIPLYING AND CABLED KNOTS [J].
HOLMES, P .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 21 (01) :7-41
[8]  
LANSBURY AN, 1991, PHYS LETT, V150, P355
[9]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[10]   COMPUTATION OF RELATIVE ROTATIONS IN SPIRAL HORSESHOES [J].
McRobie, F. A. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (01) :211-214