A NEW METHOD TO COMPUTE MATHIEU FUNCTIONS

被引:15
作者
LINDNER, A [1 ]
FREESE, H [1 ]
机构
[1] UNIV HAMBURG,INST THEORET PHYS 1,D-20355 HAMBURG,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 16期
关键词
D O I
10.1088/0305-4470/27/16/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose to evaluate the Mathieu functions by their modulus and phase. The modulus is independent of the characteristic exponent. In our approach, this exponent can be evaluated by integration of a first-order differential equation. For the Hamiltonian of the time-dependent harmonic oscillator, we do not need this exponent, only the modulus.
引用
收藏
页码:5565 / 5571
页数:7
相关论文
共 11 条
[1]  
Arscott F. M., 1964, PERIODIC DIFFERENTIA
[2]  
BLANCH G, 1970, HDB MATH FUNCTIONS, P721
[3]   QUANTUM MOTION IN A PAUL TRAP [J].
BROWN, LS .
PHYSICAL REVIEW LETTERS, 1991, 66 (05) :527-529
[4]   INVARIANTS FOR THE TIME-DEPENDENT HARMONIC-OSCILLATOR [J].
COLEGRAVE, RK ;
MANNAN, MA .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (07) :1580-1587
[5]  
GUNTHER NJ, 1977, J MATH PHYS, V18, P572, DOI 10.1063/1.523339
[6]  
LEWIS HR, 1967, PHYS REV LETT, V18, P636, DOI 10.1103/PhysRevLett.18.636.2
[8]  
LINDNER A, 1994, UNPUB Z PHYS D
[9]  
MCLACHLAN NW, 1947, THEORY APPLICATION M
[10]  
Meixner J., 1954, MATHIEUSCHE FUNKTION