PROOF OF MANDELSTAM REPRESENTATION FOR LOGARITHMICALLY SINGULAR POTENTIALS

被引:6
作者
BRANDER, O
机构
[1] Institute of Theoretical Physics, Chalmers University of Technology, Göteborg, Fack
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS | 1969年 / 61卷 / 04期
关键词
D O I
10.1007/BF02819604
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Mandelstam representation is proved in nonrelativistic potential-scattering theory for logarithmically singular potentials, that is potentials, analytic in Re r>0, having a repulsive core of the form V(r) |r|→0∼-r -2 ln r, and behaving at infinity like V(r) |r|→∞∼Cr -γ exp [-μr], μ>0, γ>5/4. The double spectral function is shown to be a continuous function for those γ. The proof rests on a detailed analysis, with a method developed by the author, of the partial-wave scattering amplitude for large energies and angular momenta. Using the thus obtained expressions for the partial-wave amplitude, the Martin proof of the Khuri dispersion relation, and the Bessis proof of the convergence of the double integral in the Mandelstam representation, are generalized to the case described above. © 1969 Società Italiana di Fisica.
引用
收藏
页码:605 / +
相关论文
共 13 条
[1]   BEHAVIOR OF SCATTERING AMPLITUDE FOR LARGE ANGULAR MOMENTUM [J].
BARUT, AO ;
DILLEY, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (11) :1401-&
[2]   UPPER BOUND FOR DOUBLE SPECTRAL FUNCTION IN POTENTIAL SCATTERING [J].
BESSIS, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (04) :637-&
[3]  
BRANDER O, 1966, ARK FYS, V32, P131
[4]   SINGULARITIES OF DOUBLE SPECTRAL FUNCTION IN POTENTIAL SCATTERING THEORY [J].
BRANDER, O .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 61 (04) :638-+
[6]  
De Alfaro V., 1965, POTENTIAL SCATTERING
[7]  
MARTIN A, 1965, PRELUDES THEORETICAL
[8]  
Olver F.W.J., 1954, PHIL T ROY SOC LON A, V247, P328
[9]  
Olver F. W. J., 1954, PHIL T ROY SOC LON A, V247, P307