CALCULATION OF THE YANG-MILLS VACUUM WAVE FUNCTIONAL

被引:97
作者
GREENSITE, JP
机构
[1] Physics Department, University of California, Santa Cruz
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(79)90178-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Working in the Schrödinger representation and A0 = 0 gauge, an approximate Yang-Mills ground-state wave functional Ψ[A] is constructed in the following way: we begin by constructing the vacuum wave functional Ψ0[A] of an Abelian gauge-field with global SU(2) symmetry, and then modify and generalize Ψ0[A] so that it becomes invariant under local SU(2) gauge transformations. This ansatz leads to a solution of the Schrödinger equation HΨ[A] = ε{lunate}0Ψ[A] for the Yang-Mills vacuum, which, although approximate, may correctly describe its confinement properties. Given Ψ[A], it is argued that the vacuum expectation values of the Wilson loop integral A(rmC) and of 't Hooft's flux-tube operator B(rmC) satisfy the Wilson-'t Hooft criteria 〈A(rmC)〉-e -area(C), 〈B(rmC)〉-e-perimeter (C), for the confinement phase of a gauge field. The confinement mechanism is essentially identical to the one discovered by Polyakov in 3-dimensional compact QED. The reason for the similarity is that there is an analog-gas" approximation to fixed-time vacuum expectation values 〈Ψ|O|Ψ〉: the analog gas in this case is a plasma of smoothed Wu-Yang monopoles. © 1979."
引用
收藏
页码:469 / 496
页数:28
相关论文
共 11 条
[1]   PHASE-TRANSITIONS IN ABELIAN LATTICE GAUGE THEORIES [J].
BANKS, T ;
MYERSON, R ;
KOGUT, J .
NUCLEAR PHYSICS B, 1977, 129 (03) :493-510
[2]   TOWARD A THEORY OF STRONG INTERACTIONS [J].
CALLAN, CG ;
DASHEN, R ;
GROSS, DJ .
PHYSICAL REVIEW D, 1978, 17 (10) :2717-2763
[3]  
Coleman Steve, COMMUNICATION
[4]   NON-CLASSICAL CONFIGURATIONS IN EUCLIDEAN FIELD-THEORY AS MINIMA OF CONSTRAINED SYSTEMS [J].
GERVAIS, JL ;
NEVEU, A ;
VIRASORO, MA .
NUCLEAR PHYSICS B, 1978, 138 (01) :45-72
[5]   FIELD-STRENGTH AND DUAL VARIABLE FORMULATIONS OF GAUGE THEORY [J].
HALPERN, MB .
PHYSICAL REVIEW D, 1979, 19 (02) :517-530
[6]  
HOOFT G, 1978, NUCL PHYS B, V138, P1
[7]  
Mandelstam S., 1976, Physics Reports. Physics Letters Section C, V23c, P245, DOI 10.1016/0370-1573(76)90043-0
[8]  
MANDELSTAM S, 1977, B AM PHYS SOC, V22, P541
[9]   QUARK CONFINEMENT AND TOPOLOGY OF GAUGE THEORIES [J].
POLYAKOV, AM .
NUCLEAR PHYSICS B, 1977, 120 (03) :429-458
[10]  
SCHWEBER S, 1962, INTRO RELATIVISTIC Q, P193