HOW GOOD IS HARTREE-FOCK APPROXIMATION .2. CASE OF CLOSED SHELLS

被引:12
作者
CALLES, A
MOSHINSKY, M
机构
关键词
D O I
10.1119/1.1976367
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
引用
收藏
页码:456 / +
页数:1
相关论文
共 8 条
[1]   GROUP THEORY OF HARMONIC OSCILLATORS .1. THE COLLECTIVE MODES [J].
BARGMANN, V ;
MOSHINSKY, M .
NUCLEAR PHYSICS, 1960, 18 (04) :697-712
[2]   BASIC CONCEPTS OF SELF-CONSISTENT-FIELD THEORY [J].
BLINDER, SM .
AMERICAN JOURNAL OF PHYSICS, 1965, 33 (06) :431-&
[3]   LINKED-CLUSTER EXPANSIONS FOR NUCLEAR MANY-BODY PROBLEM [J].
BRANDOW, BH .
REVIEWS OF MODERN PHYSICS, 1967, 39 (04) :771-&
[4]   A STUDY OF HARTREE-FOCK APPROXIMATION AS APPLIED TO FINITE NUCLEI [J].
DAVIES, KTR ;
KRIEGER, SJ ;
BARANGER, M .
NUCLEAR PHYSICS, 1966, 84 (03) :545-&
[5]   CENTRE-OF-MASS EFFECTS IN THE NUCLEAR SHELL-MODEL [J].
ELLIOTT, JP ;
SKYRME, THR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 232 (1191) :561-566
[6]   HOW GOOD IS HARTREE-FOCK APPROXIMATION [J].
MOSHINSKY, M .
AMERICAN JOURNAL OF PHYSICS, 1968, 36 (01) :52-+
[7]  
RIPKA G, 1968, ADVANCES NUCLEAR PHY, V1
[8]  
SCHIFF LI, 1955, QUANTUM MECHANICS, P174