A GLOBALLY UNIFORMLY CONVERGENT FINITE-ELEMENT METHOD FOR A SINGULARLY PERTURBED ELLIPTIC PROBLEM IN 2 DIMENSIONS

被引:75
作者
ORIORDAN, E [1 ]
STYNES, M [1 ]
机构
[1] NATL UNIV IRELAND UNIV COLL CORK,DEPT MATH,CORK,IRELAND
关键词
D O I
10.2307/2938662
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a new Galerkin finite element method for numerically solving a linear convection-dominated convection-diffusion problem in two dimensions. The method is shown to be convergent, uniformly in the perturbation parameter, of order h1/2 in a global energy norm which is stronger than the L2 norm. This order is optimal in this norm for our choice of trial functions.
引用
收藏
页码:47 / 62
页数:16
相关论文
共 17 条
[1]  
Doolan EP., 1980, UNIFORM NUMERICAL ME
[2]  
EMELJANOV KV, 1973, BOUNDARY VALUE PROBL, P00030
[3]  
GARTLAND EC, 1987, MATH COMPUT, V48, P551, DOI 10.1090/S0025-5718-1987-0878690-0
[4]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF, V224
[5]  
HEGARTY AF, 1986, THESIS TRINITY COLLE
[6]  
HEGARTY AF, UNPUB COMP UNIFORMLY
[7]  
ILIN AM, 1969, MAT ZAMETKI, V6, P237
[8]  
JOHNSON C, 1987, MATH COMPUT, V49, P25, DOI 10.1090/S0025-5718-1987-0890252-8
[9]   FINITE-ELEMENT METHODS FOR LINEAR HYPERBOLIC PROBLEMS [J].
JOHNSON, C ;
NAVERT, U ;
PITKARANTA, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) :285-312
[10]  
Ladyzhenskaya O A, 1968, LINEAR QUASILINEAR E