ANALYSIS AND SOLUTION OF THE NONGENERIC TOTAL LEAST-SQUARES PROBLEM

被引:51
作者
VANHUFFEL, S
VANDEWALLE, J
机构
关键词
D O I
10.1137/0609030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:360 / 372
页数:13
相关论文
共 12 条
[1]  
Adcock R. J, 1878, ANALYST, V5, P53, DOI DOI 10.2307/2635758
[2]   AN IMPROVED ALGORITHM FOR COMPUTING THE SINGULAR VALUE DECOMPOSITION [J].
CHAN, TF .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (01) :72-83
[4]  
Golub G. H., 2013, MATRIX COMPUTATIONS, V3
[5]   SINGULAR VALUE DECOMPOSITION AND LEAST SQUARES SOLUTIONS [J].
GOLUB, GH ;
REINSCH, C .
NUMERISCHE MATHEMATIK, 1970, 14 (05) :403-&
[6]   AN ANALYSIS OF THE TOTAL LEAST-SQUARES PROBLEM [J].
GOLUB, GH ;
VANLOAN, CF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (06) :883-893
[7]   AN EFFICIENT AND RELIABLE ALGORITHM FOR COMPUTING THE SINGULAR SUBSPACE OF A MATRIX, ASSOCIATED WITH ITS SMALLEST SINGULAR-VALUES [J].
VANHUFFEL, S ;
VANDEWALLE, J ;
HAEGEMANS, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 19 (03) :313-330
[8]   THE PARTIAL TOTAL LEAST-SQUARES ALGORITHM [J].
VANHUFFEL, S ;
VANDEWALLE, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 21 (03) :333-341
[9]  
VANHUFFEL S, 1988, ESATKUL881 KATH U LE
[10]  
VANHUFFEL S, 1987, THESIS KATHOLIEKE U