THE STRESS TENSOR IN ANTIGRANULOCYTES SHEAR FLOWS OF UNIFORM, DEFORMABLE DISKS AT HIGH SOLIDS CONCENTRATIONS

被引:89
作者
BABIC, M
SHEN, HH
SHEN, HT
机构
[1] Department of Civil and Environmental Engineering, Clarkson University, Potsdam
关键词
D O I
10.1017/S0022112090002877
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Application of the kinetic theory of gases to granular flows has greatly increased our understanding of ‘rapid’ granular flows. One of the underlying assumptions is that particles interact only through binary collisions. For a given set of material and flow parameters, as the concentration increases, the transition from a binary collision mode to other modes of interaction occurs. Kinetic theory can no longer be applied. A numerical model is utilized to simulate the mechanical behaviour of a small assembly of uniform, inelastic, frictional, deformable disks in a simple shear flow. There are two objectives: to obtain the ‘empirical’ constitutive law and to gain insight into the mechanisms that operate in the transitional and quasi-static regimes. In a simple shear flow, spatially and temporally averaged dimensionless stresses T*IJ=TIJ/(ρD2γ2) ARE functions of the concentration C the dimensionless shear rate B =γ(Kn/m)1/2, and material parameters Ks/Kn and μ Here γ is the shear rate, Kn is the normal stiffness of an assumed viscoelastic contact force model, Ks/Kn is the ratio of tangential to normal stiffness, ξNis the normal damping coefficient, μ is the friction coefficient, and ps, D and m are the particle density, diameter and mass, respectively. The range of B from 0.001 to 0.0707 was investigated for C ranging from 0.5 to 0.9, with material constants fixed as = 0.0709 (corresponding to the restitution coefficient e = 0.8 in binary impacts), Ks/Kn = 0.8 and μ= 0.5. It is found that for lower concentrations (C < 0.75) dimensionless stresses T*IJ are nearly independent of B, while for higher concentrations (C > 0.75) T*IJmonotonically decreases as B increases. Moreover, their relationship in this regime is well approximated by power law: T*IJα B-niJC). The powers nIJ range from nearly zero for C = 0.775 (corresponding to the familiar square power dependency of dimensional stresses on the shear rate in the rapid flow regime), to nearly two for C = 0.9 (corresponding to shear-rate independence in quasi-static regime). The intermediate concentration range corresponds to transition. Distinct mechanisms that govern transitional and quasi-static regimes are observed and discussed. © 1990, Cambridge University Press. All rights reserved.
引用
收藏
页码:81 / 118
页数:38
相关论文
共 30 条
  • [1] Allen MP, 1988, COMPUTER SIMULATION
  • [2] BABIC M, 1988, 8811 CLARKS U DEP CI
  • [3] BABIC M, 1989, 891 CLARKS U DEP CIV
  • [4] EXPERIMENTS ON A GRAVITY-FREE DISPERSION OF LARGE SOLID SPHERES IN A NEWTONIAN FLUID UNDER SHEAR
    BAGNOLD, RA
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 225 (1160): : 49 - 63
  • [5] CHUTE FLOWS OF GRANULAR MATERIAL - SOME COMPUTER-SIMULATIONS
    CAMPBELL, CS
    BRENNEN, CE
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1985, 52 (01): : 172 - 178
  • [6] THE STRESS TENSOR IN A TWO-DIMENSIONAL GRANULAR SHEAR-FLOW
    CAMPBELL, CS
    GONG, A
    [J]. JOURNAL OF FLUID MECHANICS, 1986, 164 : 107 - 125
  • [7] COMPUTER-SIMULATION OF GRANULAR SHEAR FLOWS
    CAMPBELL, CS
    BRENNEN, CE
    [J]. JOURNAL OF FLUID MECHANICS, 1985, 151 (FEB) : 167 - 188
  • [8] CAMPBELL CS, 1982, THESIS CALTECH PASAD
  • [9] A MICROMECHANICAL DESCRIPTION OF GRANULAR MATERIAL BEHAVIOR
    CHRISTOFFERSEN, J
    MEHRABADI, MM
    NEMATNASSER, S
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1981, 48 (02): : 339 - 344
  • [10] Cundall P.A., 1979, ENG7620711 NSF