COMPARISON OF THE SACCHAROMYCES-CEREVISIAE G1 CYCLINS - CLN3 MAY BE AN UPSTREAM ACTIVATOR OF CLN1, CLN2 AND OTHER CYCLINS

被引:412
作者
TYERS, M
TOKIWA, G
FUTCHER, B
机构
[1] COLD SPRING HARBOR LAB, COLD SPRING HARBOR, NY 11724 USA
[2] SUNY, GRAD PROGRAM GENET, STONY BROOK, NY 11792 USA
关键词
CDC28; CELL CYCLE; CLN; G1; CYCLIN; START;
D O I
10.1002/j.1460-2075.1993.tb05845.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the budding yeast Saccharomyces cerevisiae, the G1 cyclins Cln1, Cln2 and Cln3 regulate entry into the cell cycle (Start) by activating the Cdc28 protein kinase. We find that Cln3 is a much rarer protein than Cln1 or Cln2 and has a much weaker associated histone H1 kinase activity. Unlike Cln1 and Cln2, Cln3 is not significantly cell cycle regulated, nor is it down-regulated by mating pheromone-induced G1 arrest. An artificial burst of CLN3 expression early in G1 phase accelerates Start and rapidly induces at least five other cyclin genes (CLN1, CLN2, HCS26, ORFD and CLB5) and the cell cycle-specific transcription factor SWI4. In similar experiments, CLN1 is less efficient than CLN3 at activating Start. Strikingly, expression of HCS26, ORFD and CLB5 is dependent on CLN3 in a cln1 cln2 strain, possibly explaining why CLN3 is essential in the absence of CLN1 and CLN2. To explain the potent ability of Cln3 to activate Start, despite its apparently weak biochemical activity, we propose that Cln3 may be an upstream activator of the G1 cyclins which directly catalyze Start. Given the large number of known cyclins, such cyclin cascades may be a common theme in cell cycle control.
引用
收藏
页码:1955 / 1968
页数:14
相关论文
共 37 条
[1]   THE YEAST SW14 PROTEIN CONTAINS A MOTIF PRESENT IN DEVELOPMENTAL REGULATORS AND IS PART OF A COMPLEX INVOLVED IN CELL-CYCLE-DEPENDENT TRANSCRIPTION [J].
ANDREWS, BJ ;
HERSKOWITZ, I .
NATURE, 1989, 342 (6251) :830-833
[2]   CELL CYCLE-SPECIFIC EXPRESSION OF THE SWI4 TRANSCRIPTION FACTOR IS REQUIRED FOR THE CELL-CYCLE REGULATION OF HO TRANSCRIPTION [J].
BREEDEN, L ;
MIKESELL, GE .
GENES & DEVELOPMENT, 1991, 5 (07) :1183-1190
[3]   IDENTIFICATION OF A GENE NECESSARY FOR CELL-CYCLE ARREST BY A NEGATIVE GROWTH-FACTOR OF YEAST - FAR1 IS AN INHIBITOR OF A G1 CYCLIN, CLN2 [J].
CHANG, F ;
HERSKOWITZ, I .
CELL, 1990, 63 (05) :999-1011
[4]   A PUTATIVE PROTEIN-KINASE OVERCOMES PHEROMONE-INDUCED ARREST OF CELL CYCLING IN S-CEREVISIAE [J].
COURCHESNE, WE ;
KUNISAWA, R ;
THORNER, J .
CELL, 1989, 58 (06) :1107-1119
[5]  
CROSS F, 1989, ANNU REV CELL BIOL, V5, P341
[6]   A POTENTIAL POSITIVE FEEDBACK LOOP CONTROLLING CLN1 AND CLN2 GENE-EXPRESSION AT THE START OF THE YEAST-CELL CYCLE [J].
CROSS, FR ;
TINKELENBERG, AH .
CELL, 1991, 65 (05) :875-883
[9]   POSITIVE FEEDBACK IN THE ACTIVATION OF G1 CYCLINS IN YEAST [J].
DIRICK, L ;
NASMYTH, K .
NATURE, 1991, 351 (6329) :754-757
[10]   FUS3 ENCODES A CDC2+/CDC28-RELATED KINASE REQUIRED FOR THE TRANSITION FROM MITOSIS INTO CONJUGATION [J].
ELION, EA ;
GRISAFI, PL ;
FINK, GR .
CELL, 1990, 60 (04) :649-664