SYMMETRICAL CELL-DIVISION IN PSEUDOHYPHAE OF THE YEAST SACCHAROMYCES-CEREVISIAE

被引:213
作者
KRON, SJ [1 ]
STYLES, CA [1 ]
FINK, GR [1 ]
机构
[1] MIT, DEPT BIOL, CAMBRIDGE, MA 02142 USA
关键词
D O I
10.1091/mbc.5.9.1003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and daughters bud asynchronously. Mothers bud immediately but daughters grow in G1 until they achieve a critical cell size. By contrast, PH cells divide symmetrically, restricting mitosis until the bud grows to the size of the mother. Thus, mother and daughter bud synchronously in the next cycle, without a G1 delay before Start. YF and PH cells also exhibit distinct bud-site selection patterns. YF cells are bipolar, producing their second and subsequent buds at either pole. PH cells are unipolar, producing their second and subsequent buds only from the end opposite the junction with their mother. We propose that in PH cells a G2 cell-size checkpoint delays mitosis until bud size reaches that of the mother cell. We conclude that yeast and PH forms are distinct cell types each with a unique cell cycle, budding pattern, and cell shape.
引用
收藏
页码:1003 / 1022
页数:20
相关论文
共 53 条
[1]  
ADAMS AEM, 1991, METHOD ENZYMOL, V194, P729
[2]   RELATIONSHIP OF ACTIN AND TUBULIN DISTRIBUTION TO BUD GROWTH IN WILD-TYPE AND MORPHOGENETIC-MUTANT SACCHAROMYCES-CEREVISIAE [J].
ADAMS, AEM ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1984, 98 (03) :934-945
[3]   REGULATION OF P34CDC28 TYROSINE PHOSPHORYLATION IS NOT REQUIRED FOR ENTRY INTO MITOSIS IN SACCHAROMYCES-CEREVISIAE [J].
AMON, A ;
SURANA, U ;
MUROFF, I ;
NASMYTH, K .
NATURE, 1992, 355 (6358) :368-371
[4]   REGULATION OF DIMORPHISM IN SACCHAROMYCES-CEREVISIAE - INVOLVEMENT OF THE NOVEL PROTEIN-KINASE HOMOLOG ELM1P AND PROTEIN PHOSPHATASE 2A [J].
BLACKETER, MJ ;
KOEHLER, CM ;
COATS, SG ;
MYERS, AM ;
MADAULE, P .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) :5567-5581
[5]   PROPERTIES OF SACCHAROMYCES-CEREVISIAE WEE1 AND ITS DIFFERENTIAL REGULATION OF P34(CDC28) IN RESPONSE TO G(1) AND G(2) CYCLINS [J].
BOOHER, RN ;
DESHAIES, RJ ;
KIRSCHNER, MW .
EMBO JOURNAL, 1993, 12 (09) :3417-3426
[6]   GENETICS AND PHYSIOLOGY OF PROLINE UTILIZATION IN SACCHAROMYCES-CEREVISIAE - ENZYME-INDUCTION BY PROLINE [J].
BRANDRISS, MC ;
MAGASANIK, B .
JOURNAL OF BACTERIOLOGY, 1979, 140 (02) :498-503
[7]  
Byers B, 1981, MOL BIOL YEAST SACCH, P59
[8]  
CABIB E, 1971, J BIOL CHEM, V246, P152
[9]   IDENTIFICATION OF A GENE NECESSARY FOR CELL-CYCLE ARREST BY A NEGATIVE GROWTH-FACTOR OF YEAST - FAR1 IS AN INHIBITOR OF A G1 CYCLIN, CLN2 [J].
CHANG, F ;
HERSKOWITZ, I .
CELL, 1990, 63 (05) :999-1011
[10]   Budding and cell polarity in Saccharomyces cerevisiae [J].
Chant, John ;
Pringle, John R. .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1991, 1 (03) :342-350