ON OUTSTANDING VALUES IN A SEQUENCE OF RANDOM VARIABLES

被引:73
作者
TATA, MN
机构
[1] Department of Statistics and Probability, Michigan State University, East Lansing, 48823, Mich., Wells Hall
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 12卷 / 01期
关键词
D O I
10.1007/BF00538520
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A sequence {Xn} of independent and identically distributed (i.i.d.) random variables is considered. Outstanding values in the sequence are those that strictly exceed values preceding them. Let Ln be the index of the n-th outstanding value. Limit theorems are given for the sequences {Mathematical expression} and {Ln} and {δn} where δn=Ln-Ln-1. A characterization of the exponential distribution in terms of the sequence {Mathematical expression} is also given. © 1969 Springer-Verlag.
引用
收藏
页码:9 / &
相关论文
共 11 条
  • [1] BARNDORFF-NIELSEN O., 1964, ACTA MATH ACAD SCI H, V15, P399
  • [2] BERMAN SM, 1964, ANN MATH STATISTICS, V35, P391
  • [3] FOSTER FG, 1954, J ROY STAT SOC B, V16, P1
  • [4] The limited distribution of the maximum term of a random series
    Gnedenko, B
    [J]. ANNALS OF MATHEMATICS, 1943, 44 : 423 - 453
  • [5] KARLIN S, 1966, FIRST COURSE STOCHAS, P487
  • [6] LEHMANN EL, 1959, TESTING STATISTICAL, P74
  • [7] LOEVE M, 1963, PROBABILITY THEORY, P184
  • [8] NEUTS MF, TO BE PUBLISHED
  • [9] RENYI A, 1962, AUG COLL COMB METH P
  • [10] WIDDER DV, 1966, LAPLACE TRANSFORM, P182