The hypothesis that 17β-estradiol suppresses dopamine secretion into hypophysial portal blood was tested. Portal plasma concentrations of dopamine were significantly lower in proestrous rats (1.0 ± 0.1 ng/ml; mean ± SE) than in estrous rats (1.9 ± 0.38 ng/ml). To deplete the animal of endogenous steroid hormones, proestrous rats were adrenalectomized (Adx) and ovariectomized (Ovx). Twenty-four hours later, hypophysial portal blood was collected for 60 min, and the plasma from this blood was analyzed for dopamine. Arterial plasma from these rats was assayed for 17β-estradiol and progesterone. The concentrations of dopamine in the portal plasma of sham-operated rats and bilaterally Adx-Ovx rats were similar to those in estrous animals. The concentration of dopamine in portal plasma of Adx-Ovx rats injected 24 h earlier with 50 μg 17β-estradiol was 1.0 ± 0.31 ng/ml, which was comparabExposure of adipocytes from young rats (2–3 months old) to dexamethasone in vitro results in 40–50% inhibition of glucose transport and metabolism. ComparabDose-response curves were obtained for the production of androgen-binding protein (ABP) by Sertoli cells prepared from testes of 20-day-old rats and treated in culture with either FSH or testosterone (T). FSH stimulated ABP production by up to 3.5 times control levels. For NIH-FSH-Sll, the ED50 was 3 ng/ml, and for highly purified ovine FSH, the ED50 was 0.066 ng/ml. Addition of T produced a stimulation of up to 3 times control levels; half-maximal response was obtained at a dose of 4 nM. The presence of small numbers of contaminating Leydig cells in some preparations resulted in production of endogenous T, especially when high doses of NIH-FSH, which contains some LH, were employed. A modified preparatDissociation of [125I]iodoinsulin from adipocyte insulin receptors was studied in the presence or absence of the insulin derivatives, desoctapeptide insulin and desalanine desasparagine insulin. When cells were allowed to associate with a tracer concentration (10-10 M) of [125I]iodoinsulin and dissociation was studied in either insulin-free buffer or buffer containing 100 ng/ml unlabeled insulin, dissociation was accelerated in the presence of unlabeled insulin. This is consistent with negatively cooperative site-site interactions. On the other hand, when dissociation studies were performed in the presence of high concentrations of desoctapeptide insulin or desalanine desasparagine insulin, dissociation rates were slower than those observed in insulin-free buffer. In marked contrast, when cells were allowed to achieve a high fractional receptor occupancy by associating with high concentrations of either desoctapeptide insulin or desalanine desasparagine insulin, subsequent dissociation rates were greatly enhanced. Thus, insulin derivatives which failed to induce the negative cooperative effect can lead to enhanced [125I]iodoinsulin dissociation, if high fractional receptor occupancy is achieved during the association phase of the experiment. This is consistent with the hypothesis that adipocyte receptors exist in functionally distinct, high affinity, low capacity and low affinity, high capacity states. Thus, when association is performed with [125I]iodoinsulin plus high concentrations of unlabeled insulin, dissociation rates are enhanced because most of the [125I]iodoinsulin binds to the low affinity (fast dissociating) sites, due to saturation of the high affinity, low capacity sites. © 1979 by The Endocrine Society.