DEFORMATION OF N-DIMENSIONAL OBJECTS

被引:28
作者
Borrel, Paul [1 ]
Bechmann, Dominique [2 ]
机构
[1] IBM Corp, Div Res, Thomas J Watson Res Ctr, Interact Geometr Modeling, Yorktown Hts, NY 10598 USA
[2] Univ Strasbourg 1, Dept Informat, F-67084 Strasbourg, France
关键词
D O I
10.1142/S0218195991000281
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a new technique for computing space deformations that interpolate a set of user-defined constraints, Constraints are specified by indicating the images of selected points. The deformation is formulated as the product of a polynomial function f of R-n into a higher-dimensional space, R-m, with a linear projection from R-m back to R-n. The projection matrix is computed using a pseudo-inverse technique. For sufficient m, the degrees of freedom may be used to optimize potential functions controlled by attracting and repulsing points. A prototype implementation is presented, which demonstrates the application of this technique to the interactive design of free-form shapes (when n = 3) and of deformation processes in space-time domain (when n = 4).
引用
收藏
页码:427 / 453
页数:27
相关论文
共 14 条
[1]  
Barr A.H., 1984, ACM COMPUTER GRAPHIC, V18
[2]  
Bartels R.H., 1987, INTRO SPLINES USE CO
[3]  
Bechmann D., 1989, THESIS ULP STRASBOUR
[4]  
COQUILLART S, 1990, ACM COMPUTER GRAPHIC, V24
[5]   ON POLYA FREQUENCY FUNCTIONS .4. FUNDAMENTAL SPLINE FUNCTIONS AND THEIR LIMITS [J].
CURRY, HB ;
SCHOENBERG, IJ .
JOURNAL D ANALYSE MATHEMATIQUE, 1966, 17 :71-+
[6]  
Forsey D., 1988, ACM COMPUTER GRAPHIC, V22
[7]   SOME APPLICATIONS OF THE PSEUDOINVERSE OF A MATRIX [J].
GREVILLE, TNE .
SIAM REVIEW, 1960, 2 (01) :15-22
[8]  
GRIESSMAIR J, EUROGRAPHICS 89, P137
[9]  
Platt J., 1988, ACM COMPUTER GRAPHIC, V22
[10]  
Sedeberg T.W., 1986, SIGGRAPH 1896, V20