GENERALIZED SPECTRAL DECOMPOSITION OF THE BETA-ADIC BAKERS TRANSFORMATION AND INTRINSIC IRREVERSIBILITY

被引:68
作者
ANTONIOU, I [1 ]
TASAKI, S [1 ]
机构
[1] INT SOLVAY INST PHYS & CHEM,B-1050 BRUSSELS,BELGIUM
来源
PHYSICA A | 1992年 / 190卷 / 3-4期
关键词
D O I
10.1016/0378-4371(92)90039-S
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a generalized spectral decomposition of the Frobenius-Perron operator of the beta-adic baker's transformation using a general iterative operator method applicable in principle for any mixing dynamical system. The eigenvalues in the decomposition are related to the decay rates of the autocorrelation functions and have magnitudes less than one. We explicitly define appropriate generalized function spaces, which provide mathematical meaning to the formally obtained spectral decomposition. The unitary Frobenius-Perron evolution of densities, when extended to the generalized function spaces, splits into two semigroups, one decaying in the future and the other in the past. This split, which reflects the asymptotic evolution of the forward and backward K-partitions, shows the intrinsic irreversibility of the baker's transformation.
引用
收藏
页码:303 / 329
页数:27
相关论文
共 45 条
[1]  
Amrein W. O., 1977, SCATTERING THEORY QU
[2]  
[Anonymous], 1971, LINEAR OPERATORS
[3]  
ANTONIOU I, 1992, UNPUB PHYSICA A
[4]  
ANTONIOU I, 1992, IN PRESS INT J Q CHE
[5]  
ANTONIOU I, 1988, THESIS FREE U BRUSSE
[6]  
ANTONIOU I, 1992, IN PRESS NUOVO CIMEN
[7]  
ANTONIOU I, IN PRESS COHERENT ST
[8]  
ANTONIOU I, IN PRESS J PHYS A
[9]  
ANTONIOU I, UNPUB PHYSICA A
[10]   NONUNITARY TRANSFORMATION OF CONSERVATIVE TO DISSIPATIVE EVOLUTIONS [J].
ANTONIOU, IE ;
MISRA, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (12) :2723-2729