A SLOWLY MIXING MARKOV-CHAIN WITH IMPLICATIONS FOR GIBBS SAMPLING

被引:16
作者
MATTHEWS, P [1 ]
机构
[1] UNIV MARYLAND,BALTIMORE,MD 21201
关键词
GIBBS SAMPLING; POSTERIOR DISTRIBUTION; MIXING RATE; COUPLING;
D O I
10.1016/0167-7152(93)90172-F
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a Markov chain that converges to its stationary distribution very slowly. It has the form of a Gibbs sampler running on a posterior distribution of a parameter theta given data X. Consequences for Gibbs sampling are discussed.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 10 条
[1]  
APPLEGATE D, 1991, SAMPLING INTEGRATION
[2]  
CUI LM, 1992, MONITORING CONVERGEN
[3]  
Doob J. L., 1953, STOCHASTIC PROCESSES
[4]  
DOSS H, 1991, STUDY CONVERGENCE PR
[5]  
DYER M, 1991, 91104 CARN MELL U DE
[6]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[7]   ILLUSTRATION OF BAYESIAN-INFERENCE IN NORMAL DATA MODELS USING GIBBS SAMPLING [J].
GELFAND, AE ;
HILLS, SE ;
RACINEPOON, A ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) :972-985
[8]  
GELMAN A, 1992, HONEST INFERENCES IT
[9]   LARGE CLIQUES ELUDE THE METROPOLIS PROCESS [J].
JERRUM, M .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (04) :347-359
[10]  
[No title captured]