INVARIANT SUBSPACE THEOREMS FOR POSITIVE OPERATORS

被引:28
作者
ABRAMOVICH, YA
ALIPRANTIS, CD
BURKINSHAW, O
机构
[1] Department of Mathematical Sciences, IUPUI, Indianapolis, IN
关键词
D O I
10.1006/jfan.1994.1099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish new invariant subspace theorems for positive operators on Banach lattices. Here are three sample results. If a quasinilpotent positive operator S dominates a non-zero compact operator K (i.e., \Kx\ less-than-or-equal-to S Absolute value of x for each x), then every positive operator that commutes with S, in particular S itself, has a non-trivial closed invariant ideal. If a positive kernel operator commutes with a quasinilpotent positive operator, then both operators have a common non-trivial closed invariant subspace. Every quasinilpotent positive Dunford-Pettis operator has a non-trivial closed invariant subspace. (C) 1994 Academic Press, Inc.
引用
收藏
页码:95 / 111
页数:17
相关论文
共 20 条
[1]   INVARIANT SUBSPACES OF OPERATORS ON L(P)-SPACES [J].
ABRAMOVICH, YA ;
ALIPRANTIS, CD ;
BURKINSHAW, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 115 (02) :418-424
[2]   ON THE SPECTRAL-RADIUS OF POSITIVE OPERATORS [J].
ABRAMOVICH, YA ;
ALIPRANTIS, CD ;
BURKINSHAW, O .
MATHEMATISCHE ZEITSCHRIFT, 1992, 211 (04) :593-607
[3]  
Aliprantis C. D., 1985, POSITIVE OPERATORS, V119
[4]   POSITIVE COMPACT OPERATORS ON BANACH-LATTICES [J].
ALIPRANTIS, CD ;
BURKINSHAW, O .
MATHEMATISCHE ZEITSCHRIFT, 1980, 174 (03) :289-298
[5]  
Ando T., 1957, J FS HOKKAIDO U SER, V13, P214
[6]   INVARIANT SUBSPACES OF COMPLETELY CONTINUOUS OPERATORS [J].
ARONSZAJN, N ;
SMITH, KT .
ANNALS OF MATHEMATICS, 1954, 60 (02) :345-350
[7]   SOLUTION OF AN INVARIANT SUBSPACE PROBLEM OF KT SMITH AND PR HALMOS [J].
BERNSTEIN, AR ;
ROBINSON, A .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 16 (03) :421-+
[8]  
Brown S., 1978, INTEGRAL EQU OPER TH, V1, P310
[9]   TRIANGULARIZING SEMIGROUPS OF QUASI-NILPOTENT OPERATORS WITH NONNEGATIVE ENTRIES [J].
CHOI, MD ;
NORDGREN, EA ;
RADJAVI, H ;
ROSENTHAL, P ;
ZHONG, Y .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (01) :15-25
[10]   IRREDUCIBLE COMPACT-OPERATORS [J].
DEPAGTER, B .
MATHEMATISCHE ZEITSCHRIFT, 1986, 192 (01) :149-153