CIRCULAR SPLINES

被引:46
作者
HOSCHEK, J
机构
[1] Department of Mathematics, Technical University
关键词
RATIONAL BEZIER SPLINES; RATIONAL B-SPLINES; CIRCULAR ARCS; MILLING; CIRCULAR PIPE CONNECTIONS; CAMS;
D O I
10.1016/0010-4485(92)90072-I
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The paper is concerned with the problem of fitting a continuous curve that interpolates or approximates a given data set in R2 or R3, where the required curve only has circular arcs. For the representation of the circular arcs, rational quadratic Bezier curves are used
引用
收藏
页码:611 / 618
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 1988, DIFFERENTIAL GEOMETR
[2]  
Farin G., 2014, CURVES SURFACES COMP
[3]   CIRCULAR PIPE-CONNECTIONS [J].
FUHS, W ;
STACHEL, H .
COMPUTERS & GRAPHICS, 1988, 12 (01) :53-57
[4]  
GASSMANN V, 1990, VDI BER, V847, P155
[5]   BULGE, SHEAR AND SQUASH - A REPRESENTATION FOR THE GENERAL CONIC ARC [J].
GOSSLING, TH .
COMPUTER-AIDED DESIGN, 1981, 13 (02) :81-84
[6]   INTRINSIC PARAMETERIZATION FOR APPROXIMATION. [J].
Hoschek, J. .
Computer Aided Geometric Design, 1988, 5 (01) :27-31
[7]  
Hoschek J., 1989, Computer-Aided Geometric Design, V6, P293, DOI 10.1016/0167-8396(89)90030-7
[8]  
Hoschek J., 1989, GRUNDLAGEN GEOMETRIS
[9]   CHOOSING NODES IN PARAMETRIC CURVE INTERPOLATION [J].
LEE, ETY .
COMPUTER-AIDED DESIGN, 1989, 21 (06) :363-370
[10]  
Liu D.-Y., 1989, COMPUTATIONAL GEOMET