SYMPLECTIC STRUCTURE OF THE MODULI SPACE OF FLAT CONNECTION ON A RIEMANN SURFACE

被引:96
作者
ALEKSEEV, AY
MALKIN, AZ
机构
[1] Institute of Theoretical Physics, Uppsala University, Uppsala
关键词
D O I
10.1007/BF02101598
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the canonical symplectic structure on the moduli space of flat g-connections on a Riemann surface of genus g with a marked points. For a being a semisimple Lie algebra we obtain an explicit efficient formula for this symplectic form and prove that it may be represented as a sum of a copies of Kirillov symplectic form on the orbit of dressing transformations in the Poisson-Lie group G* and g copies of the symplectic structure on the Heisenberg double of the Poisson-Lie group G (the pair (G,G*) corresponds to the Lie algebra g).
引用
收藏
页码:99 / 119
页数:21
相关论文
共 15 条
[1]  
ALEKSEEV AY, 1994, COMMUN MATH PHYS, V162, P413
[2]  
Arnold V. I., 1980, MATH METHODS CLASSIC, V2nd
[3]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[4]   REMARKS ON THE CANONICAL QUANTIZATION OF THE CHERN-SIMONS-WITTEN THEORY [J].
ELITZUR, S ;
MOORE, G ;
SCHWIMMER, A ;
SEIBERG, N .
NUCLEAR PHYSICS B, 1989, 326 (01) :108-134
[5]  
FOCK VV, 1992, ITEP7292 REPR
[6]  
GAWEDZKI K, 1991, IHESP9159 PREPR
[7]   THE SYMPLECTIC NATURE OF FUNDAMENTAL-GROUPS OF SURFACES [J].
GOLDMAN, WM .
ADVANCES IN MATHEMATICS, 1984, 54 (02) :200-225
[8]  
GURUPRASAD K, IN PRESS
[9]  
Kirillov A.A., 1976, GRUNDLEHREN MATH WIS, V220
[10]  
LU JH, 1990, J DIFFER GEOM, V31, P501