OPTIMUM APPROXIMATION FOR RESIDUAL STIFFNESS IN LINEAR-SYSTEM IDENTIFICATION

被引:89
作者
KAMMER, DC
机构
[1] SDRC Inc, San Diego, CA, USA, SDRC Inc, San Diego, CA, USA
关键词
MATHEMATICAL TECHNIQUES - Matrix Algebra - SYSTEMS SCIENCE AND CYBERNETICS - Identification;
D O I
10.2514/3.9857
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A new method of system identification uses projector matrix theory and the Moore-Penrose generalized inverse to derive an analytical stiffness matrix that, when combined with the analytical mass matrix, will more closely predict modal test results. Weighting matrices are used to enforce connectivity and make weighted corrections to the original analytical stiffness matrix. A simple and straightforward mathematical formulation is obtained. The method is compared with other methods found in the literature, and a simple numerical example is presented.
引用
收藏
页码:104 / 112
页数:9
相关论文
共 17 条
[1]   OPTIMAL WEIGHTED ORTHOGONALIZATION OF MEASURED MODES [J].
BARUCH, M ;
BARITZHACK, IY .
AIAA JOURNAL, 1978, 16 (04) :346-351
[2]   OPTIMAL CORRECTION OF MASS AND STIFFNESS MATRICES USING MEASURED MODES [J].
BARUCH, M .
AIAA JOURNAL, 1982, 20 (11) :1623-1626
[3]  
BARUCH M, 1982, AIAA820769 PAP
[4]   IMPROVEMENT OF A LARGE ANALYTICAL MODEL USING TEST DATA [J].
BERMAN, A ;
NAGY, EJ .
AIAA JOURNAL, 1983, 21 (08) :1168-1173
[5]  
BERMAN A, 1980, AIAA J, P809
[6]  
BERMAN A, 1984, 25TH P IAAA ASME ANS, P123
[7]  
BERMAN A, 1971, AIAA J, V9, P1482
[8]  
BERMAN A, 1975, AIAA75809 PAP
[9]  
CAESAR B, 1986, 4 INT MOD AN C LOS A, P394