A POSTERIORI ERROR ESTIMATION OF FINITE-ELEMENT APPROXIMATIONS IN FLUID-MECHANICS

被引:36
作者
STROUBOULIS, T [1 ]
ODEN, JT [1 ]
机构
[1] UNIV TEXAS,TEXAS INST COMPUTAT MECH,AUSTIN,TX 78712
关键词
Mathematical Techniques--Finite Element Method;
D O I
10.1016/0045-7825(90)90101-Q
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Several techniques for a posteriori error estimation of finite element approximations of time-dependent problems are developed and tested. These include a discontinuous Galerkin method for linear convection problems, a residual-type method for diffusion problems and an operator splitting method for convection-diffusion problems. Some extensions to certain classes of nonlinear hyperbolic problems are also presented. © 1990.
引用
收藏
页码:201 / 242
页数:42
相关论文
共 31 条
[1]   2ND-ORDER FINITE-ELEMENT APPROXIMATIONS AND A POSTERIORI ERROR ESTIMATION FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :183-198
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[4]  
Babuska I., 1980, Computational Methods in Nonlinear Mechanics. Proceedings of the TICOM Second International Conference, P67
[5]   AN ERROR ANALYSIS FOR THE FINITE-ELEMENT METHOD APPLIED TO CONVECTION DIFFUSION-PROBLEMS [J].
BABUSKA, I ;
SZYMCZAK, WG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 31 (01) :19-42
[6]  
Babuska I., 1983, ADAPTIVE COMPUTATION, P57
[7]  
BABUSKA I, 1986, ACCURACY ESTIMATES A
[8]  
BABUSKA I, 1986, ACCURACY ESTIMATES A, P3
[9]  
Bank R.E., 1986, ACCURACY ESTIMATES A, P119
[10]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X