ON THE DYNAMICAL SYMMETRIES OF THE KEPLER-PROBLEM

被引:5
作者
AKYILDIZ, Y
机构
[1] Department of Mathematics, Middle East Technical University, Ankara
关键词
D O I
10.1063/1.524511
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We try to understand the geometry of the SO(n + 1,2) action on the Kepler Manifold of the n - dimensional hydrogen atom. We show that the SO(n + 1,2) symmetry of the Kepler Problem is closely related to the fact that the geodesic flow on T*Sn is periodic. We also exhibit the orbit picture analog of the peculiar property of the corresponding SO(n + 1,2) representation; that is, it stays irreducible when restricted to SO(n + 1,1) subgroups. © 1980 American Institute of Physics.
引用
收藏
页码:665 / 670
页数:6
相关论文
共 20 条
[1]  
AKYILDIZ Y, 1976, THESIS U CALIF
[2]  
ALLILUEV SP, 1958, SOV PHYS JETP-USSR, V6, P156
[3]   UNIFICATION OF EXTERNAL CONFORMAL SYMMETRY GROUP AND INTERNAL CONFORMAL DYNAMICAL GROUP [J].
BARUT, AO ;
BORNZIN, GL .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (07) :1000-1006
[4]  
ELHADAD J, 1973, CONVEGNO GEOMETRIA S
[5]   Hydrogen atom theory [J].
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1935, 98 (3-4) :145-154
[6]   RADON TRANSFORM ON ZOLL SURFACES [J].
GUILLEMIN, V .
ADVANCES IN MATHEMATICS, 1976, 22 (01) :85-119
[7]  
Hamermesh M., 1962, GROUP THEORY ITS APP
[8]   REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .2. [J].
HARISHCHANDRA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 76 (JAN) :26-65
[9]   DIFFERENTIAL OPERATORS ON HOMOGENEOUS SPACES [J].
HELGASON, S .
ACTA MATHEMATICA, 1959, 102 (3-4) :239-299